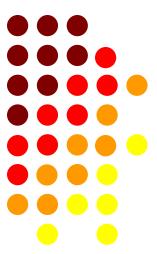


Introduction of Limit



LIMIT We say that $\lim_{x \to a} f(x) = l$ if whenever $x \to a$, $f(x) \to l$.

Working rules for finding $\lim_{x \to a} f(x)$

RULE | Put x = a in the given function. If f(a) is a definite value then

$$\lim_{x\to a} f(x) = f(a).$$

EXAMPLES 1. $\lim_{x \to 0} \sin x = \sin 0 = 0$.

2.
$$\lim_{x \to 1} (x^2 + 5x - 2) = (1^2 + 5 \times 1 - 2) = 4$$

RULE II If f(x) is a rational function then factorize the numerator and the denominator. Cancel out the common factors and then put x = a.

EXAMPLE Evaluate (i)
$$\lim_{x \to 3} \left(\frac{x^2 - 9}{x - 3} \right)$$
 (ii) $\lim_{x \to 1} \frac{(x^2 - 4x + 3)}{(x - 1)}$.

SOLUTION (i)
$$\lim_{x \to 3} \left(\frac{x^2 - 9}{x - 3} \right) = \lim_{x \to 3} \frac{(x + 3)(x - 3)}{(x - 3)} = \lim_{x \to 3} (x + 3) = 6.$$

(ii)
$$\lim_{x \to 1} \frac{(x^2 - 4x + 3)}{(x - 1)} = \lim_{x \to 1} \frac{(x - 1)(x - 3)}{(x - 1)} = \lim_{x \to 1} (x - 3) = -2.$$

EXAMPLE Evaluate
$$\lim_{x \to 0} \left\{ \frac{\sqrt{1+x} - \sqrt{1-x}}{x} \right\}$$
.

SOLUTION We have

$$\lim_{x \to 0} \left\{ \frac{\sqrt{1+x} - \sqrt{1-x}}{x} \right\} = \lim_{x \to 0} \left\{ \frac{(\sqrt{1+x} - \sqrt{1-x}) \cdot (\sqrt{1+x} + \sqrt{1-x})}{x} \cdot \frac{(\sqrt{1+x} + \sqrt{1-x})}{(\sqrt{1+x} + \sqrt{1-x})} \right\}$$

$$= \lim_{x \to 0} \frac{((1+x) - (1-x))}{x(\sqrt{1+x} + \sqrt{1-x})}$$

$$= \lim_{x \to 0} \frac{2x}{x(\sqrt{1+x} + \sqrt{1-x})}$$

$$= \lim_{x \to 0} \frac{2}{(\sqrt{1+x} + \sqrt{1-x})} = 1$$

[putting
$$x = 0$$
].

Fundamental Theorems on Limits (without proof)

(i)
$$\lim_{x \to a} \{f(x) + g(x)\} = \{\lim_{x \to a} f(x)\} + \{\lim_{x \to a} g(x)\}$$

(ii)
$$\lim_{x \to a} \{f(x) - g(x)\} = \{\lim_{x \to a} f(x)\} - \{\lim_{x \to a} g(x)\}$$

(iii)
$$\lim_{x \to a} \{c \cdot f(x)\} = c \cdot \{\lim_{x \to a} f(x)\}\$$
, where c is a constant

(iv)
$$\lim_{x \to a} \{f(x) \cdot g(x)\} = \left\{ \lim_{x \to a} f(x) \right\} \cdot \left\{ \lim_{x \to a} g(x) \right\}$$

(v)
$$\lim_{x \to a} \left\{ \frac{f(x)}{g(x)} \right\} = \frac{\left\{ \lim_{x \to a} f(x) \right\}}{\left\{ \lim_{x \to a} g(x) \right\}}$$
, provided $\lim_{x \to a} g(x) \neq 0$

SUMMARY

1.
$$\lim_{x \to a} \left(\frac{x^n - a^n}{x - a} \right) = na^{n-1}$$
, where $a > 0$.

2. $\lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = 1$.

3. $\lim_{x \to 0} \left(\frac{a^x - 1}{x} \right) = \log_e a$.

4. $\lim_{x \to 0} (1 + x)^{1/x} = e$.

5. $\lim_{x \to 0} \frac{\log(1 + x)}{x} = 1$.

2.
$$\lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = 1$$
.

$$3. \lim_{x \to 0} \left(\frac{a^x - 1}{x} \right) = \log_e a.$$

4.
$$\lim_{x \to 0} (1+x)^{1/x} = e$$
.

5.
$$\lim_{x \to 0} \frac{\log (1+x)}{x} = 1$$

EXAMPLE 1 Evaluate
$$\lim_{x \to a} \left\{ \frac{x^{12} - a^{12}}{x - a} \right\}$$
.

EXAMPLE Evaluate
$$\lim_{x \to a} \frac{(x+2)^{3/2} - (a+2)^{3/2}}{x-a}.$$

SOLUTION
$$\lim_{x \to a} \frac{(x+2)^{3/2} - (a+2)^{3/2}}{x-a}$$

$$= \lim_{(x+2) \to (a+2)} \frac{(x+2)^{3/2} - (a+2)^{3/2}}{(x+2) - (a+2)}$$

$$= \frac{3}{2} \cdot (a+2)^{\left(\frac{3}{2}-1\right)} = \frac{3}{2} \cdot (a+2)^{1/2} \qquad \left[\because \lim_{x \to a} \left(\frac{x^n - a^n}{x - a}\right) = na^{n-1} \right].$$

Evaluate:

$$(i) \lim_{x \to 0} \left(\frac{e^{-x} - 1}{x} \right) (ii) \lim_{x \to 0} \left(\frac{e^{x} - e^{-x}}{x} \right) (iii) \lim_{x \to 0} \left(\frac{e^{x} + e^{-x} - 2}{x^{2}} \right)$$

EXAMPLE: Evaluate
$$\lim_{x\to 0} \left(\frac{3^x-2^x}{x}\right)$$
.

SOLUTION
$$\lim_{x \to 0} \left(\frac{3^x - 2^x}{x} \right) = \lim_{x \to 0} \left\{ \frac{(3^x - 1) - (2^x - 1)}{x} \right\}$$

$$= \lim_{x \to 0} \left(\frac{3^x - 1}{x} \right) - \lim_{x \to 0} \left(\frac{2^x - 1}{x} \right)$$

$$= (\log 3 - \log 2) = \log \frac{3}{2} \qquad \left[\because \lim_{x \to 0} \left(\frac{a^x - 1}{x} \right) = \log a \right]$$

TRIGONOMETRIC LIMITS

(i)
$$\lim_{\theta \to 0} \sin \theta = 0$$

(ii)
$$\lim_{\theta \to 0} \cos \theta = 1$$

THEOREM 2 (i)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 (ii) $\lim_{x\to 0} \frac{\tan x}{x} = 1$

EXAMPLE 1 Evaluate:

(i)
$$\lim_{x \to 0} \frac{\sin 2x}{x}$$
 (ii) $\lim_{x \to 0} \frac{\sin 3x}{5x}$ (iii) $\lim_{x \to 0} \left(\frac{\sin ax}{\sin bx} \right)$

EXAMPLE 2 Evaluate $\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}$.

Evaluate: EXAMPLE

(i)
$$\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$$

(i)
$$\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$$
 (ii) $\lim_{x \to 0} \frac{(\csc x - \cot x)}{x}$

SOLUTION (i)
$$\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x) = \lim_{x \to \frac{\pi}{2}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x)}{\cos x} = \lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x) \cos x}{\cos^2 x}$$

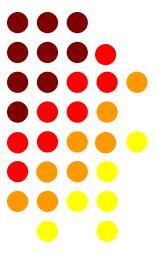
$$= \lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x) \cos x}{(1 - \sin^2 x)}$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{(1 + \sin x)} = 0 \qquad \qquad \left[\text{putting } x = \frac{\pi}{2} \right].$$

THANK YOU

Lecture-30

Continuity



Continuity

CONTINUITY AT A POINT A real function f(x) is said to be continuous at a point a of its domain if $\lim_{x \to a} f(x)$ exists and equals f(a).

Thus, f(x) is continuous at x = a if

$$\lim_{x \to a+} f(x) = \lim_{x \to a-} f(x) = f(a).$$

If f(x) is not continuous at a point, it is said to be *discontinuous* at that point.

If f(x) is not continuous at a point, it is said to be discontinuous at that point.

REMARK f(x) is discontinuous at x = a in each of the following cases:

- (i) f(a) is not defined
- (ii) $\lim_{x \to a} f(x)$ does not exist

EXAMPLE 1 Show that $f(x) = x^3$ is continuous at x = 2.

.

EXAMPLE 1 Show that $f(x) = x^3$ is continuous at x = 2.

SOLUTION We have $f(2) = 2^3 = 8$;

$$\lim_{x \to 2+} f(x) = \lim_{h \to 0} (2+h)^3 = \lim_{h \to 0} (8+h^3+12h+6h^2) = 8;$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} (2 - h)^{3} = \lim_{h \to 0} (8 - h^{3} - 12h + 6h^{2}) = 8.$$

$$\lim_{x \to 2+} f(x) = \lim_{x \to 2-} f(x) = f(2).$$

EXAMPLE Discuss the continuity of the function f(x) at x = 0, if

$$f(x) = \begin{cases} 2x - 1, & x < 0 \\ 2x + 1, & x \ge 0. \end{cases}$$

SOLUTION Clearly,
$$f(0) = (2 \times 0 + 1) = 1$$
.

$$\lim_{x \to 0+} f(x) = \lim_{h \to 0} f(0 + h)$$

$$= \lim_{h \to 0} [2(0 + h) + 1] = \lim_{h \to 0} (2h + 1) = 1$$
.

$$\lim_{x \to 0-} f(x) = \lim_{h \to 0} f(0 - h)$$

$$= \lim_{h \to 0} [2(0 - h) - 1)] = \lim_{h \to 0} (-2h - 1) = -1$$
.

Thus, $\lim_{x\to 0+} f(x) \neq \lim_{x\to 0-} f(x)$ and therefore, $\lim_{x\to 0} f(x)$ does not exist.

EXAMPLE Show that the function
$$f(x) = \begin{cases} 3x - 2, & \text{when } x \le 0 \\ x + 1, & \text{when } x > 0 \end{cases}$$

is discontinuous at x = 0.

SOLUTION We have,
$$f(0) = (3 \times 0 - 2) = -2$$
.

$$\lim_{x \to 0+} f(x) = \lim_{h \to 0} f(0+h)$$
$$= \lim_{h \to 0} (h+1) = 1.$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h)$$

$$= \lim_{h \to 0} [3(-h) - 2] = \lim_{h \to 0} (-3h - 2) = -2.$$

$$\lim_{x\to 0+} f(x) \neq \lim_{x\to 0-} f(x)$$
 and therefore, $\lim_{x\to 0} f(x)$ does not exist.

EXAMPLE: Show that the function
$$f(x) = \begin{cases} 3x - 2, & \text{when } x \le 0 \\ x + 1, & \text{when } x > 0 \end{cases}$$
 is discontinuous at $x = 0$.

SOLUTION We have, $f(0) = (3 \times 0 - 2) = -2$.

$$\lim_{x \to 0+} f(x) = \lim_{h \to 0} f(0+h)$$

$$= \lim_{h \to 0} (h+1) = 1.$$

$$\lim_{x \to 0-} f(x) = \lim_{h \to 0} f(0-h)$$

$$= \lim_{h \to 0} [3(-h) - 2] = \lim_{h \to 0} (-3h - 2) = -2.$$

 $\lim_{x\to 0+} f(x) \neq \lim_{x\to 0-} f(x)$ and therefore, $\lim_{x\to 0} f(x)$ does not exist.

EXAMPLE Show that the function
$$f(x) = \begin{cases} \frac{x}{|x|}, & \text{when } x \neq 0 \\ 1, & \text{when } x = 0 \end{cases}$$

is discontinuous at x = 0.

EXAMPLE Show that the function
$$f(x) = \begin{cases} \frac{x}{|x|}, & \text{when } x \neq 0 \\ 1, & \text{when } x = 0 \end{cases}$$

is discontinuous at x = 0.

SOLUTION It is being given that f(0) = 1.

$$\lim_{x \to 0+} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} \frac{h}{|h|} = \lim_{h \to 0} \frac{h}{h} = 1.$$

$$\lim_{x \to 0-} f(x) = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} \frac{-h}{|h|} = \lim_{h \to 0} \frac{-h}{h} = -1.$$

$$\therefore \lim_{x \to 0+} f(x) \neq \lim_{x \to 0-} f(x).$$

So, $\lim_{x\to 0} f(x)$ does not exist.

EXAMPLE Examine the continuity of the function

$$f(x) = \begin{cases} \frac{|\sin x|}{x}, & x \neq 0 \\ 1, & x = 0 \text{ at } x = 0. \end{cases}$$

SOLUTION We have f(0) = 1.

$$\lim_{x \to 0+} f(x) = \lim_{h \to 0} f(0+h)$$

$$= \lim_{h \to 0} \frac{|\sin(0+h)|}{(0+h)} = \lim_{h \to 0} \frac{|\sin h|}{h} = \lim_{h \to 0} \frac{\sin h}{h} = 1.$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} f(0 - h)$$

$$= \lim_{h \to 0} \frac{|\sin(-h)|}{-h} = \lim_{h \to 0} \frac{|-\sin h|}{-h} = \lim_{h \to 0} \frac{\sin h}{-h} = -1.$$

$$\lim_{x \to 0+} f(x) \neq \lim_{x \to 0-} f(x). \text{ So, } \lim_{x \to 0} f(x) \text{ does not exist.}$$

Hence, f(x) is discontinuous at x = 0.

EXAMPLE Find the value of k for which

$$f(x) = \begin{cases} kx + 5, & when \ x \le 2 \\ x - 1, & when \ x > 2 \end{cases}$$

is continuous at x = 2.

SOLUTION We have,
$$f(2) = (k \times 2 + 5) = (2k + 5)$$
.

$$\lim_{x \to 2+} f(x) = \lim_{h \to 0} f(2+h)$$

$$\lim_{h \to 0} \{(2+h) - 1\} = \lim_{h \to 0} (1+h) = 1.$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} f(2-h)$$

$$= \lim_{h \to 0} \{k(2-h) + 5\} = \lim_{h \to 0} \{(2k+5) - kh\} = (2k+5).$$

Now, $\lim_{x\to 2} f(x)$ exists only when 2k+5=1, i.e., when k=-2.

When
$$k = -2$$
, we have $\lim_{x \to 2} f(x) = f(2) = 1$.

Hence, f(x) is continuous at x = 2 when k = -2.

EXAMPLE 1 If the function
$$f(x) = \begin{cases} 3ax + b, & \text{for } x > 1 \\ 11, & \text{for } x = 1 \\ 5ax - 2b, & \text{for } x < 1 \end{cases}$$

is continuous at x = 1, find the values of a and b.

SOLUTION We have, f(1) = 11.

$$\lim_{x \to 1+} f(x) = \lim_{h \to 0} f(1+h)$$

$$= \lim_{h \to 0} \{3a(1+h) + b\} = \lim_{h \to 0} \{(3a+b) + 3ah\}$$

$$= (3a+b).$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1 - h)$$

$$= \lim_{h \to 0} \{5a(1 - h) - 2b\} = \lim_{h \to 0} \{(5a - 2b) - 5ah\}$$

$$= (5a - 2b).$$

Since f(x) is continuous at x = 1, we have

$$\lim_{x \to 1+} f(x) = \lim_{x \to 1-} f(x) = f(1).$$

$$a + b = 5a - 2b = 11.$$

On solving (3a + b = 11) and (5a - 2b = 11), we get a = 3, b = 2.

Hence,
$$a = 3$$
, $b = 2$.

EXAMPLE Show that the function
$$f(x) = \begin{cases} \left(\frac{e^{1/x} - 1}{e^{1/x} + 1}\right), & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$

is discontinuous at x = 0.

SOLUTION Clearly, f(0) = 0.

Now,
$$\lim_{x \to 0} f(x) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} f(h) = \lim_{h \to 0} \left(\frac{e^{1/h} - 1}{e^{1/h} + 1} \right)$$
$$= \lim_{h \to 0} \frac{e^{1/h} \left(1 - \frac{1}{e^{1/h}} \right)}{e^{1/h} \left(1 + \frac{1}{1/h} \right)} = \lim_{h \to 0} \frac{\left(1 - \frac{1}{e^{1/h}} \right)}{\left(1 + \frac{1}{1/h} \right)} = 1.$$

And,
$$\lim_{x \to 0} f(x) = \lim_{h \to 0} f(0 - h) = \lim_{h \to 0} f(-h) = \lim_{h \to 0} \left(\frac{e^{-1/h} - 1}{e^{-1/h} + 1} \right)$$

$$= \lim_{h \to 0} \frac{\left(\frac{1}{e^{1/h}} - 1\right)}{\left(\frac{1}{e^{1/h}} + 1\right)} = -1.$$

Thus, $\lim_{x\to 0+} f(x) \neq \lim_{x\to 0-} f(x)$, and therefore, $\lim_{x\to 0} f(x)$ does not exist. Hence, f(x) is discontinuous at x = 0.

PRACTICE QUESTIONS

Prove That

$$f(x) = \begin{cases} \frac{x^2 - x - 6}{x - 3}, & \text{when } x \neq 3; \\ x - 3 & \text{s. ontinuous at } x = 3. \end{cases}$$

$$f(x) = \begin{cases} \frac{x^2 - 25}{x - 5}, & \text{when } x \neq 5; \\ 10, & \text{when } x = 5 \end{cases}$$

$$f(x) = \begin{cases} \frac{\sin 3x}{x}, & \text{when } x \neq 0; \\ 1, & \text{when } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{1 - \cos x}{x^2}, & \text{when } x \neq 0; \\ 1, & \text{when } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{1 - \cos x}{x^2}, & \text{when } x \neq 0; \\ 1, & \text{when } x = 0 \end{cases}$$

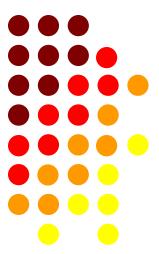
$$f(x) = \begin{cases} 2 - x, & \text{when } x < 2; \\ 2 + x, & \text{when } x \geq 2 \end{cases}$$

$$f(x) = \begin{cases} 3 - x, & \text{when } x \leq 0; \\ x^2, & \text{when } x > 0 \end{cases}$$
is discontinuous at $x = 0$.

THANK YOU

Lecture- 31

Differentiability



Differentiability

Let f(x) be a real function and a be any real number. Then, we define

- (i) Right-hand derivative $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$, if it exists, is called the right-hand derivative of f(x) at x=a, and it is denoted by Rf'(a).
- (ii) Left-hand derivative $\lim_{h\to 0} \frac{f(a-h)-f(a)}{-h}$, if it exists, is called the left-hand derivative of f(x) at x=a, and it is denoted by Lf'(a).

DIFFERENTIABILITY A function f(x) is said to be differentiable at x = a, if Rf'(a) = Lf'(a).

EXAMPLE 1 Show that $f(x) = x^2$ is differentiable at x = 1 and find f'(1).

EXAMPLE 1 Show that $f(x) = x^2$ is differentiable at x = 1 and find f'(1).

SOLUTION
$$Rf'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 - (1)^2}{h}$$

$$= \lim_{h \to 0} \left(\frac{1+h^2 + 2h - 1}{h}\right) = \lim_{h \to 0} (h+2) = 2.$$
And, $Lf'(1) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h} = \lim_{h \to 0} \frac{(1-h)^2 - (1)^2}{-h}$

$$= \lim_{h \to 0} \left(\frac{1+h^2 - 2h - 1}{-h}\right) = \lim_{h \to 0} (-h+2) = 2.$$

$$\therefore$$
 $Rf'(1) = Lf'(1) = 2.$

This shows that f(x) is differentiable at x = 1 and f'(1) = 2.

Show that the function
$$f(x) = \begin{cases} 1 + x, & \text{if } x \le 2; \\ 5 - x, & \text{if } x > 2 \end{cases}$$
 is not differentiable at $x = 2$.

SOLUTION
$$Rf'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \left[\frac{5 - (2+h) - 3}{h} \right]$$
$$= \lim_{h \to 0} \frac{-h}{h} = \lim_{h \to 0} (-1) = -1.$$

And,
$$Lf'(2) = \lim_{h \to 0} \frac{f(2-h) - f(2)}{-h}$$

= $\lim_{h \to 0} \left[\frac{1 + (2-h) - 3}{-h} \right] = \lim_{h \to 0} \frac{-h}{-h} = \lim_{h \to 0} 1 = 1.$

Thus, $Rf'(2) \neq Lf'(2)$.

Hence, f(x) is not differentiable at x = 2.

THEOREM Every differentiable function is continuous. But, every continuous function need not be differentiable.

72.830

EXAMPL' Show that f(x) = |x-2| is continuous but not differentiable at x = 2.

SOLUTION We have f(2) = |2 - 2| = 0.

$$\lim_{x \to 2+} f(x) = \lim_{h \to 0} f(2+h) = \lim_{h \to 0} |2+h-2| = \lim_{h \to 0} |h| = \lim_{h \to 0} h = 0.$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} f(2 - h) = \lim_{h \to 0} |2 - h - 2| = \lim_{h \to 0} |-h| = \lim_{h \to 0} h = 0.$$

$$\lim_{x \to 2+} f(x) = \lim_{x \to 2-} f(x) = f(2) = 0.$$

So, f(x) is continuous at x = 2.

But,
$$Rf'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{|2+h-2| - 0}{h}$$
$$= \lim_{h \to 0} \frac{|h|}{h} = \lim_{h \to 0} \frac{h}{h} = 1.$$
And,
$$Lf'(2) = \lim_{h \to 0} \frac{f(2-h) - f(2)}{-h} = \lim_{h \to 0} \frac{|2-h-2| - 0}{-h}$$
$$= \lim_{h \to 0} \frac{|-h|}{-h} = \lim_{h \to 0} \frac{h}{-h} = -1.$$

Thus, $Rf'(2) \neq Lf'(2)$.

This shows that f(x) is not differentiable at x = 2.

Show that f(x) = |x - 5| is continuous but not differentiable at x = 5.

Let
$$f(x) = \begin{cases} (2-x), & \text{when } x \ge 1 \\ x, & \text{when } 0 \le x \le 1. \end{cases}$$

Show that f(x) is continuous but not differentiable at x = 1.

Show that f(x) = [x] is neither continuous nor derivable at x = 2.

Show that the function
$$f(x) = \begin{cases} (1-x), & \text{when } x < 1; \\ (x^2-1), & \text{when } x \ge 1 \end{cases}$$

is continuous but not differentiable at x = 1.

Let
$$f(x) = \begin{cases} (2+x), & \text{if } x \ge 0 \\ (2-x), & \text{if } x < 0. \end{cases}$$
 Show that $f(x)$ is not derivable at $x = 0$.

THANK YOU

Lecture- 32 & 33

Derivative of sum, difference, and its based questions

SUMMARY

We may summarise the above results as given below:

(i)
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

(ii)
$$\frac{d}{dx}(e^x) = e^x$$

(iii)
$$\frac{d}{dx}(\sin x) = \cos x$$

(iv)
$$\frac{d}{dx}(\cos x) = -\sin x$$

(v)
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

(vi)
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

(vii)
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$
 (viii) $\frac{d}{dx}(\cot x) = -\csc^2 x$.

(viii)
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
.

The derivative of a constant function is zero, i.e., $\frac{d}{dx}(c) = 0$.

EXAMPLE 1 Find the derivative of (i) $8x^3$ (ii) $6\sqrt{x}$

(iii) 5e^x

(iv) 9×2^x

EXAMPLE 2 Find the derivative of $(x^3 + e^x + 3^x + \cot x)$ with respect to x.

EXAMPLE 3 Find the derivative of $\left(9x^2 + \frac{3}{x} + 5\sin x\right)$ with respect to x.

SOLUTION We have
$$\frac{d}{dx} (9x^2 + \frac{3}{x} + 5\sin x)$$

= $9 \cdot \frac{d}{dx} (x^2) + 3 \cdot \frac{d}{dx} (x^{-1}) + 5 \cdot \frac{d}{dx} (\sin x)$

$$= 9 \times 2x + 3 \cdot (-1) x^{-2} + 5 \cos x = 18x - \frac{3}{x^2} + 5 \cos x.$$

EXAMPLE 1 Differentiate the following functions with respect to x:

$$\left(x^2 + \frac{4}{x^2} - \frac{2}{3}\tan x + 6e\right)$$

SOLUTION
$$\frac{d}{dx} \left(x^2 + \frac{4}{x^2} - \frac{2}{3} \tan x + 6e \right)$$

$$= \frac{d}{dx}(x^{2}) + 4 \cdot \frac{d}{dx}(x^{-2}) - \frac{2}{3} \cdot \frac{d}{dx}(\tan x) + 6 \cdot \frac{d}{dx}(e)$$

$$= 2x + 4 \cdot (-2)x^{-3} - \frac{2}{3}\sec^{2}x + 6 \times 0 \qquad \left[\because \frac{d}{dx}(e) = 0\right]$$

$$= 2x - \frac{8}{x^{3}} - \frac{2}{3}\sec^{2}x.$$

EXAMPLE 2 Find the derivative of $\begin{cases} \frac{3}{\sqrt[3]{x}} - \frac{5}{\cos x} + \frac{6}{\sin x} - \frac{2\tan x}{\sec x} + 7 \end{cases}$

EXAMPLE 3 Differentiate the following functions:

(i)
$$(x^2 - 5x + 6)(x - 3)$$
 (ii) $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$ (iii) $\frac{3x^2 + 2x + 5}{\sqrt{x}}$

EXAMPLE 4 If
$$y = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$$
, find $\frac{dy}{dx}$.

SOLUTION $y = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \sqrt{\frac{2\sin^2 x}{2\cos^2 x}} = \tan x$.

$$\therefore \frac{dy}{dx} = \frac{d}{dx} (\tan x) = \sec^2 x.$$

EXAMPLE 5 If
$$y = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty\right)$$
 show that $\frac{dy}{dx} = y$.

SOLUTION We have, $y = e^x$.

$$\therefore \quad \frac{dy}{dx} = \frac{d}{dx} \left(e^x \right) = e^x = y.$$

EXAMPLE 6 If
$$u = 3t^4 - 5t^3 + 2t^2 - 18t + 4$$
, find $\frac{du}{dt}$ at $t = 1$.

...

SOLUTION
$$\frac{du}{dt} = \frac{d}{dt} (3t^4 - 5t^3 + 2t^2 - 18t + 4)$$

$$= 3 \cdot \frac{d}{dt} (t^4) - 5 \cdot \frac{d}{dt} (t^3) + 2 \cdot \frac{d}{dt} (t^2) - 18 \cdot \frac{d}{dt} (t) + \frac{d}{dt} (4)$$

$$= 3 \times 4t^3 - 5 \times 3t^2 + 2 \times 2t - 18 \times 1 + 0$$

$$= 12t^3 - 15t^2 + 4t - 18.$$

$$\therefore \left(\frac{du}{dt}\right)_{t=1} = (12 \times 1^3 - 15 \times 1^2 + 4 \times 1 - 18)$$

$$= (12 - 15 + 4 - 18) = -17.$$

DERIVATIVE OF THE PRODUCT OF FUNCTIONS

THEOREM (Product rule) If f(x) and g(x) are two differentiable functions then $f(x) \cdot g(x)$ is also differentiable, and

$$f(x) \cdot g(x)$$
 is also differentiable, and
$$\frac{d}{dx} \{f(x) \cdot g(x)\} = f(x) \cdot \frac{d}{dx} \{g(x)\} + g(x) \cdot \frac{d}{dx} \{f(x)\}.$$

EXAMPLE 1 Differentiate: (i) xe^x

(ii) $x^2 e^x \sin x$

EXAMPLE 2 Differentiate $x^2 \tan x$.

PRACTICE QUESTIONS

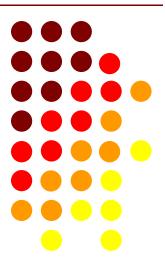
Differentiate:

$$(x^2 + 3x + 1) \sin x$$

$$x^n \cot x$$

THANK YOU

Derivative of Quotient of functions and Composite Functions



Derivative of the Quotient of two Functions

THEOREM (Quotient rule) If f(x) and g(x) are two differentiable functions and $g(x) \neq 0$ then $\frac{f(x)}{g(x)}$ is also differentiable, and

$$\frac{d}{dx}\left\{\frac{f(x)}{g(x)}\right\} = \frac{g(x)\cdot\frac{d}{dx}\left\{f(x)\right\} - f(x)\cdot\frac{d}{dx}\left\{g(x)\right\}}{\left[g(x)\right]^2}.$$

EXAMPLE 1 Differentiate:

(i)
$$\frac{e^x}{x}$$

(i)
$$\frac{e^x}{x}$$
 (ii) $\left(\frac{2x+3}{x^2-5}\right)$

(iii)
$$\frac{e^x}{(1+\sin x)}$$

EXAMPLE 2 Differentiate
$$\left(\frac{x^2 + 5x - 6}{4x^2 - x + 3}\right)$$
.

EXAMPLE If
$$y = \left\{ \frac{1 - \tan x}{1 + \tan x} \right\}$$
, show that $\frac{dy}{dx} = \frac{-2}{(1 + \sin 2x)}$.

SOLUTION By the quotient rule, we have

$$\frac{dy}{dx} = \frac{(1+\tan x) \cdot \frac{d}{dx} (1-\tan x) - (1-\tan x) \cdot \frac{d}{dx} (1+\tan x)}{(1+\tan x)^2}$$

$$= \frac{(1+\tan x)(-\sec^2 x) - (1-\tan x)(\sec^2 x)}{(1+\tan x)^2}$$

$$= \frac{-2\sec^2 x}{(1+\tan x)^2} = \frac{-2}{(\cos^2 x)(1+\tan^2 x + 2\tan x)}$$

$$= \frac{-2}{(\cos^2 x)} \left\{ 1 + \frac{\sin^2 x}{\cos^2 x} + \frac{2\sin x}{\cos x} \right\} = \frac{-2}{(1+\sin 2x)}$$

EXAMPLE 5 Differentiate:

$$(i) \left(\frac{\sin x + \cos x}{\sin x - \cos x} \right)$$

$$(ii) \left(\frac{\sec x - 1}{\sec x + 1} \right)$$

 \mathcal{J}_{i}

SOLUTION (i)
$$\frac{d}{dx} \left(\frac{\sin x + \cos x}{\sin x - \cos x} \right)$$

$$= \frac{(\sin x - \cos x) \cdot \frac{d}{dx}(\sin x + \cos x) - (\sin x + \cos x) \cdot \frac{d}{dx}(\sin x - \cos x)}{(\sin x - \cos x)^2}$$

$$= \frac{(\sin x - \cos x) \cdot \frac{d}{dx}(\sin x - \cos x)}{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}$$

$$= \frac{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}{(\sin x - \cos x)^2}$$

$$= \frac{-[(\sin x - \cos x)^2 + (\sin x + \cos x)^2]}{(\sin x - \cos x)^2}$$

$$= \frac{-2(\sin^2 x + \cos^2 x)}{(\sin^2 x + \cos^2 x - 2\sin x \cos x)} = \frac{-2}{(1 - \sin 2x)}.$$

(ii)
$$\frac{d}{dx} \left(\frac{\sec x - 1}{\sec x + 1} \right)$$

$$= \frac{(\sec x + 1) \cdot \frac{d}{dx} (\sec x - 1) - (\sec x - 1) \cdot \frac{d}{dx} (\sec x + 1)}{(\sec x + 1)^2}$$

$$= \frac{(\sec x + 1) \sec x \tan x - (\sec x - 1) \sec x \tan x}{(\sec x + 1)^2} = \frac{2\sec x \tan x}{(\sec x + 1)^2}.$$

Differentiate:

1.
$$\frac{2^x}{x}$$

$$2. \frac{\log x}{x}$$

3.
$$\frac{e^x}{(1+x)}$$

1.
$$\frac{2^x}{x}$$
 2. $\frac{\log x}{x}$ 3. $\frac{e^x}{(1+x)}$ 4. $\frac{e^x}{(1+x^2)}$

5.
$$\left(\frac{2x^2-4}{3x^2+7}\right)$$

$$6. \left(\frac{x^2 + 3x - 1}{x + 2} \right)$$

7.
$$\frac{(x^2-1)}{(x^2+7x+1)}$$

5.
$$\left(\frac{2x^2-4}{3x^2+7}\right)$$
 6. $\left(\frac{x^2+3x-1}{x+2}\right)$ 7. $\frac{(x^2-1)}{(x^2+7x+1)}$ 8. $\left(\frac{5x^2+6x+7}{2x^2+3x+4}\right)$

9.
$$\frac{x}{(a^2 + x^2)}$$

10.
$$\frac{x^4}{\sin x}$$

9.
$$\frac{x}{(a^2 + x^2)}$$
 10. $\frac{x^4}{\sin x}$ 11. $\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}$ 12. $\frac{\cos x}{\log x}$

12.
$$\frac{\cos x}{\log x}$$

ANSWERS

1.
$$\frac{2^x(x \log 2 - 1)}{x^2}$$
 2. $\frac{(1 - \log x)}{x^2}$ 3. $\frac{xe^x}{(1 + x)^2}$ 4. $\frac{e^x(1 - x)^2}{(1 + x^2)^2}$

2.
$$\frac{(1 - \log x)}{x^2}$$

3.
$$\frac{xe^x}{(1+x)^2}$$

4.
$$\frac{e^x(1-x)^2}{(1+x^2)^2}$$

5.
$$\frac{52x}{(3x^2+7)^2}$$

6.
$$\frac{(x^2 + 4x + 7)}{(x+2)^2}$$

5.
$$\frac{52x}{(3x^2+7)^2}$$
 6. $\frac{(x^2+4x+7)}{(x+2)^2}$ 7. $\frac{(7x^2+4x+7)}{(x^2+7x+1)^2}$

8.
$$\frac{3(x^2+4x+1)}{(2x^2+3x+4)^2}$$
 9.

9.
$$\frac{(a^2 - x^2)}{(a^2 + x^2)^2}$$

8.
$$\frac{3(x^2+4x+1)}{(2x^2+3x+4)^2}$$
 9.
$$\frac{(a^2-x^2)}{(a^2+x^2)^2}$$
 10.
$$\frac{x^3(4\sin x - x\cos x)}{\sin^2 x}$$

ANSWERS

11.
$$\frac{\sqrt{a}}{\sqrt{x} \cdot (\sqrt{a} - \sqrt{x})^2}$$

12.
$$\frac{-(x \sin x \log x + \cos x)}{x(\log x)^2}$$

Derivative of Quotient of functions and Composite Functions

Derivative of a Function of a Function

CHAIN RULE If
$$y = f(t)$$
 and $t = g(x)$ then $\frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{dx}\right)$.

This rule may be extended further.

If
$$y = f(t)$$
, $t = g(u)$ and $u = h(x)$ then $\frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{du} \times \frac{du}{dx}\right)$.

EXAMPLE 1 Differentiate (i) sin x³

 $(ii) \sin^3 x$

(iii) e^{sin x}

EXAMPLE 2 If
$$y = \frac{1}{\sqrt{a^2 - x^2}}$$
, find $\frac{dy}{dx}$.

SOLUTION Put $(a^2 - x^2) = t$, so that $y = \frac{1}{\sqrt{t}} = t^{-1/2}$ and $t = (a^2 - x^2)$.

$$\therefore \frac{dy}{dt} = -\frac{1}{2}t^{-3/2} \text{ and } \frac{dt}{dx} = -2x.$$

So,
$$\frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{dx}\right)$$
$$= \left(-\frac{1}{2}t^{-3/2}\right)(-2x) = xt^{-3/2} = x(a^2 - x^2)^{-3/2}.$$

EXAMPLE 3 Differentiate:

$$(i) (ax + b)^m$$

· -

$$(ii)(3x+5)^6$$

EXAMPLE Differentiate $e^{\sqrt{\cot x}}$.

SOLUTION Let $y = e^{\sqrt{\cot x}}$. Put $\cot x = t$ and $\sqrt{\cot x} = \sqrt{t} = u$, so that $y = e^u$, $u = \sqrt{t}$ and $t = \cot x$.

$$\therefore \quad \frac{dy}{du} = e^{u}, \quad \frac{du}{dt} = \frac{1}{2}t^{-1/2} = \frac{1}{2\sqrt{t}} \quad \text{and} \quad \frac{dt}{dx} = -\csc^2 x.$$

So,
$$\frac{dy}{dx} = \left(\frac{dy}{du} \times \frac{du}{dt} \times \frac{dt}{dx}\right) = -\frac{1}{2} \cdot \frac{\csc^2 x}{\sqrt{t}} e^{u}$$

$$= \frac{-\csc^2 x}{2\sqrt{t}} \cdot e^{\sqrt{t}} \qquad [\because u = \sqrt{t}]$$

$$= \frac{-\csc^2 x}{2\sqrt{\cot x}} \cdot e^{\sqrt{\cot x}} \qquad [\because t = \cot x].$$

EXAMPLE If
$$y = \cos^2 x^2$$
, find $\frac{dy}{dx}$.

SOLUTION $y = (\cos x^2)^2$. Put $x^2 = t$ and $\cos x^2 = \cos t = u$, so that $y = u^2$, $u = \cos t$ and $t = x^2$.

$$\therefore \quad \frac{dy}{du} = 2u, \quad \frac{du}{dt} = -\sin t \quad \text{and} \quad \frac{dt}{dx} = 2x.$$

So,
$$\frac{dy}{dx} = \left(\frac{dy}{du} \times \frac{du}{dt} \times \frac{dt}{dx}\right)$$
$$= -4ux \sin t = -4x \sin t \cos t \quad [\because u = \cos t]$$
$$= -4x \sin x^2 \cos x^2 = -2x \sin(2x^2) \quad [\because t = x^2]$$

EXAMPLE Differentiate

$$\sqrt{\frac{1 - \tan x}{1 + \tan x}}$$

EXAMPLE If
$$y = \sin(\sqrt{\sin x + \cos x})$$
, find $\frac{dy}{dx}$.

SOLUTION Putting $(\sin x + \cos x) = t$ and $\sqrt{(\sin x + \cos x)} = \sqrt{t} = u$, we get $y = \sin u$, $u = \sqrt{t}$ and $t = (\sin x + \cos x)$.

$$\therefore \qquad \frac{dy}{du} = \cos u, \ \frac{du}{dt} = \frac{1}{2} t^{-1/2} = \frac{1}{2\sqrt{t}}$$

and
$$\frac{dt}{dx} = (\cos x - \sin x)$$
.

So,
$$\frac{dy}{dx} = \left(\frac{dy}{du} \times \frac{du}{dt} \times \frac{dt}{dx}\right) = \frac{\cos u}{2\sqrt{t}} \cdot (\cos x - \sin x)$$

$$= \frac{\cos \sqrt{t}}{2\sqrt{t}} \cdot (\cos x - \sin x) \qquad [\because u = \sqrt{t}]$$

$$= \frac{\cos(\sqrt{\sin x + \cos x})(\cos x - \sin x)}{2\sqrt{\sin x + \cos x}} \ [\because t = (\sin x + \cos x)].$$

EXAMPLE! Differentiate $e^{ax}\cos(bx+c)$.

SOLUTION Using the product rule, we have

$$\frac{d}{dx} \{e^{ax} \cos(bx + c)\}$$

$$= e^{ax} \cdot \frac{d}{dx} \{\cos(bx + c)\} + \cos(bx + c) \cdot \frac{d}{dx} (e^{ax})$$

$$= e^{ax} \{-\sin(bx + c)\} \cdot \frac{d}{dx} (bx + c) + \cos(bx + c) \cdot e^{ax} \cdot \frac{d}{dx} (ax)$$
[using the chain rule]
$$= -be^{ax} \sin(bx + c) + ae^{ax} \cos(bx + c)$$

$$= e^{ax} [a\cos(bx + c) - b\sin(bx + c)].$$

PRACTICE QUESTIONS

1. If $y = \frac{\cos x - \sin x}{\cos x + \sin x}$, show that $\frac{dy}{dx} + y^2 + 1 = 0$.

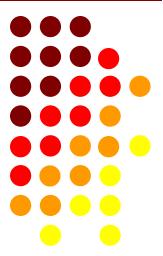
2. If
$$y = \frac{\cos x + \sin x}{\cos x - \sin x}$$
, show that $\frac{dy}{dx} = \sec^2\left(x + \frac{\pi}{4}\right)$.

3. If
$$y = \sqrt{\frac{1-x}{1+x}}$$
, prove that $(1-x^2)\frac{dy}{dx} + y = 0$.

4. If
$$y = \sqrt{\frac{\sec x - \tan x}{\sec x + \tan x}}$$
, show that $\frac{dy}{dx} = \sec x$ (tan $x + \sec x$).

THANK YOU

Derivatives of Inverse Trignometric Function



SUMMARY

(i)
$$\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

(ii)
$$\frac{d}{dx} (\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}$$

(iii)
$$\frac{d}{dx} (\tan^{-1} x) = \frac{1}{(1+x^2)}$$

(iv)
$$\frac{d}{dx}$$
 (cot⁻¹x) = $\frac{-1}{(1+x^2)}$

$$(v) \frac{d}{dx} (\sec^{-1} x) = \frac{1}{|x| \sqrt{x^2 - 1}}$$

(vi)
$$\frac{d}{dx}$$
 (cosec⁻¹x) = $\frac{-1}{|x| \cdot \sqrt{x^2 - 1}}$

Differentiate the following w.r.t. x: EXAMPLE 1

(i)
$$\sin^{-1}2x$$

(ii)
$$\tan^{-1}\sqrt{x}$$

(i)
$$\sin^{-1}2x$$
 (ii) $\tan^{-1}\sqrt{x}$ (iii) $\cos^{-1}(\cot x)$

SOLUTION

(i) Let $y = \sin^{-1} 2x$.

Putting 2x = t, we get $y = \sin^{-1}t$ and t = 2x.

Now,
$$y = \sin^{-1}t \implies \frac{dy}{dt} = \frac{1}{\sqrt{1-t^2}}$$

And,
$$t = 2x \implies \frac{dt}{dx} = 2$$
.

$$\therefore \frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{dx}\right) = \frac{2}{\sqrt{1 - t^2}} = \frac{2}{\sqrt{1 - 4x^2}} \qquad [\because t = 2x].$$

Hence,
$$\frac{d}{dx} (\sin^{-1} 2x) = \frac{2}{\sqrt{1 - 4x^2}}$$
.

(ii) Let $y = \tan^{-1} \sqrt{x}$.

Putting $\sqrt{x} = t$, we get $y = \tan^{-1}t$ and $t = \sqrt{x}$.

Now,
$$y = \tan^{-1}t \implies \frac{dy}{dt} = \frac{1}{(1+t^2)}$$
.
And, $t = \sqrt{x} \implies \frac{dt}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$.

$$\therefore \frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{dx}\right) = \frac{1}{(1+t^2)} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}(1+x)} \quad [\because t = \sqrt{x}].$$
Hence, $\frac{d}{dx} \left(\tan^{-1}\sqrt{x}\right) = \frac{1}{2\sqrt{x}(1+x)}$.

(iii) Let
$$y = \cos^{-1}(\cot x)$$
.

Putting $\cot x = t$, we get $y = \cos^{-1}t$ and $t = \cot x$.

Now,
$$y = \cos^{-1}t \implies \frac{dy}{dt} = \frac{-1}{\sqrt{1-t^2}}$$

And,
$$t = \cot x \implies \frac{dt}{dx} = -\csc^2 x$$
.

$$\therefore \frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{dx}\right) = \frac{\csc^2 x}{\sqrt{1 - t^2}} = \frac{\csc^2 x}{\sqrt{1 - \cot^2 x}} \qquad [\because t = \cot x].$$

Hence,
$$\frac{d}{dx} \{\cos^{-1}(\cot x)\} = \frac{\csc^2 x}{\sqrt{1 - \cot^2 x}}$$

EXAMPLE 2 Differentiate the following w.r.t. x:

(i) $\sec(\tan^{-1}x)$ (ii) $\sin(\tan^{-1}x)$ (iii) $\cot(\cos^{-1}x)$

SOLUTION

(i) Let $y = \sec(\tan^{-1}x)$.

Putting $tan^{-1}x = t$, we get $y = \sec t$ and $t = tan^{-1}x$.

Now,
$$y = \sec t \implies \frac{dy}{dt} = \sec t \tan t$$
.

And,
$$t = \tan^{-1}x \implies \frac{dt}{dx} = \frac{1}{(1+x^2)}$$

$$\therefore \frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{dx}\right) = \frac{\sec t \tan t}{(1+x^2)} = \frac{(\sqrt{1+\tan^2 t})(\tan t)}{(1+x^2)}$$
$$= \frac{(\sqrt{1+x^2})x}{(1+x^2)} = \frac{x}{\sqrt{1+x^2}} \qquad [\because t = \tan^{-1}x \implies \tan t = x]$$

Hence, $\frac{d}{dx} \{ \sec(\tan^{-1} x) \} = \frac{x}{\sqrt{1 + x^2}}$

(ii) Let $y = \sin(\tan^{-1}x)$. Putting $\tan^{-1}x = t$, we get $y = \sin t$ and $t = \tan^{-1}x$. Now, $y = \sin t \implies \frac{dy}{dt} = \cos t$.

And,
$$t = \tan^{-1}x \Rightarrow \frac{dt}{dx} = \frac{1}{(1+x^2)}$$

$$\therefore \frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{dx}\right) = \cos t \cdot \frac{1}{(1+x^2)} = \frac{1}{(1+x^2)^{\frac{3}{2}}}$$

$$\left[\because \tan t = x \Rightarrow \cos t = \frac{1}{\sqrt{1+x^2}}\right].$$
Hence, $\frac{d}{dx} \left\{ \sin \left(\tan^{-1}x \right) \right\} = \frac{1}{(1+x^2)^{\frac{3}{2}}}.$

(iii) Let
$$y = \cot(\cos^{-1}x)$$
.

Putting $\cos^{-1} x = t$, we get $y = \cot t$ and $t = \cos^{-1} x$.

Now,
$$y - \cot t \Rightarrow \frac{dy}{dt} - -\csc^2 t$$
.

And,
$$t = \cos^{-1} x \implies \frac{dt}{dx} = \frac{-1}{\sqrt{1 - x^2}}$$

$$\therefore \frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{dx}\right) = \frac{\csc^2 t}{\sqrt{1 - x^2}} = \frac{1}{(1 - x^2)^{\frac{3}{2}}}$$

$$\left[\because \cos t = x \implies \csc^2 t = \frac{1}{(1 - x^2)}\right].$$

Hence,
$$\frac{d}{dx} \{ \cot (\cos^{-1} x) \} = \frac{1}{(1-x^2)^{3/2}}$$

EXAMPLE 4 Differentiate $\sqrt{\cot^{-1}\sqrt{x}}$ w.r.t. x.

SOLUTION Let
$$y = \sqrt{\cot^{-1} \sqrt{x}}$$
.

Putting
$$\sqrt{x} = t$$
 and $\cot^{-1}\sqrt{x} = \cot^{-1}t = u$, we get

$$y = \sqrt{u}$$
, where $u = \cot^{-1}t$ and $t = \sqrt{x}$.

Now,
$$y = \sqrt{u} \implies \frac{dy}{du} = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}};$$

$$u = \cot^{-1}t \implies \frac{du}{dt} = \frac{-1}{(1+t^2)}$$

And,
$$t = \sqrt{x} \implies \frac{dt}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$
.

$$\therefore \frac{dy}{dx} = \left(\frac{dy}{du} \times \frac{du}{dt} \times \frac{dt}{dx}\right) = \frac{-1}{4\sqrt{u(1+t^2)\sqrt{x}}}$$

$$= \frac{-1}{4(\sqrt{\cot^{-1}t})(1+t^2)\sqrt{x}} \qquad [\because u = \cot^{-1}t]$$

$$= \frac{-1}{4(\sqrt{\cot^{-1}\sqrt{x}})(1+x)\sqrt{x}} \quad [\because \quad t = \sqrt{x}].$$

EXAMPLE 5 Differentiate $e^{\tan^{-1}\sqrt{x}}$ w.r.t. x.

- yy-------

SOLUTION

Let
$$y = e^{\tan^{-1}\sqrt{x}}$$
.

Putting $\sqrt{x} = t$ and $\tan^{-1}\sqrt{x} = \tan^{-1}t = u$, we get $y = e^u$, where $u = \tan^{-1}t$ and $t = \sqrt{x}$.

Now,
$$y = e^{u} \Rightarrow \frac{dy}{du} = e^{u}$$
;
 $u = \tan^{-1}t \Rightarrow \frac{du}{dt} = \frac{1}{(1+t^{2})}$.
And, $t = \sqrt{x} \Rightarrow \frac{dt}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$.

$$\therefore \frac{dy}{dx} = \left(\frac{dy}{du} \times \frac{du}{dt} \times \frac{dt}{dx}\right) = e^{u} \cdot \frac{1}{(1+t^2)} \cdot \frac{1}{2\sqrt{x}}$$
$$= e^{\tan^{-1}t} \cdot \frac{1}{(1+t^2)} \cdot \frac{1}{2\sqrt{x}} \qquad [\because u = \tan^{-1}t]$$

$$\therefore \frac{dy}{dx} = \left(\frac{dy}{du} \times \frac{du}{dt} \times \frac{dt}{dx}\right) = e^{u} \cdot \frac{1}{(1+t^2)} \cdot \frac{1}{2\sqrt{x}}$$

$$= e^{\tan^{-1}t} \cdot \frac{1}{(1+t^2)} \cdot \frac{1}{2\sqrt{x}} \qquad [\because \quad u = \tan^{-1}t]$$

$$= \frac{e^{\tan^{-1}\sqrt{x}}}{2\sqrt{x}(1+x)} \qquad [\because \quad t = \sqrt{x}].$$

Hence, $\frac{dy}{dx} = \frac{e^{\tan^{-1}\sqrt{x}}}{2\sqrt{x}(1+x)}$.

EXAMPLE' Show that
$$\frac{d}{dx} \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right] = \sqrt{a^2 - x^2}.$$

SOLUTION We have

$$\frac{d}{dx} \left[\frac{x}{2} \cdot \sqrt{a^2 - x^2} + \frac{a^2}{2} \cdot \sin^{-1} \frac{x}{a} \right]$$

$$= \frac{d}{dx} \left[\frac{x}{2} \cdot \sqrt{a^2 - x^2} \right] + \frac{a^2}{2} \cdot \frac{d}{dx} \left[\sin^{-1} \frac{x}{a} \right]$$

$$= \frac{x}{2} \cdot \frac{d}{dx} (\sqrt{a^2 - x^2}) + (\sqrt{a^2 - x^2}) \cdot \frac{d}{dx} \left(\frac{x}{2} \right) + \frac{a^2}{2} \cdot \frac{1}{\sqrt{1 - \frac{x^2}{a^2}}} \cdot \frac{1}{a}$$

$$= \frac{x}{2} \cdot \frac{1}{2} (a^2 - x^2)^{-\frac{1}{2}} \cdot (-2x) + (\sqrt{a^2 - x^2}) \cdot \frac{1}{2} + \frac{a^2}{2\sqrt{a^2 - x^2}}$$

$$= \frac{x}{2} \cdot \frac{d}{dx} (\sqrt{a^2 - x^2}) + (\sqrt{a^2 - x^2}) \cdot \frac{d}{dx} \left(\frac{x}{2}\right) + \frac{a^2}{2} \cdot \frac{1}{\sqrt{1 - \frac{x^2}{a^2}}} \cdot \frac{1}{a}$$

$$= \frac{x}{2} \cdot \frac{1}{2} (a^2 - x^2)^{-1/2} \cdot (-2x) + (\sqrt{a^2 - x^2}) \cdot \frac{1}{2} + \frac{a^2}{2\sqrt{a^2 - x^2}}$$

$$= \frac{-x^2}{2\sqrt{a^2 - x^2}} + \frac{\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2\sqrt{a^2 - x^2}}$$

$$= \frac{-x^2 + (a^2 - x^2) + a^2}{2\sqrt{a^2 - x^2}} = \frac{(a^2 - x^2)}{\sqrt{(a^2 - x^2)}} = \sqrt{(a^2 - x^2)}.$$
Hence,
$$\frac{d}{dx} \left[\frac{x}{2} \cdot \sqrt{a^2 - x^2} + \frac{a^2}{2} \cdot \sin^{-1} \frac{x}{a} \right] = \sqrt{a^2 - x^2}.$$

Differentiate each of the following w.r.t. x:

1.
$$\cos^{-1} 2x$$

2.
$$tan^{-1}x^2$$

3.
$$\sec^{-1}\sqrt{x}$$

1.
$$\cos^{-1}2x$$
 2. $\tan^{-1}x^2$ 3. $\sec^{-1}\sqrt{x}$ 4. $\sin^{-1}\frac{x}{a}$

5.
$$tan^{-1}(\log x)$$

6.
$$\cot^{-1}(e^x)$$

5.
$$tan^{-1}(\log x)$$
 6. $cot^{-1}(e^x)$ 7. $\log (tan^{-1}x)$ 8. $cot^{-1}x^3$

8.
$$\cot^{-1} x^3$$

9.
$$\sin^{-1}(\cos x)$$

9.
$$\sin^{-1}(\cos x)$$
 10. $(1+x^2)\tan^{-1}x$ 11. $\tan^{-1}(\cot x)$

ANSWERS

1.
$$\frac{-2}{\sqrt{1-4x^2}}$$

2.
$$\frac{2x}{(1+x^4)}$$

$$3. \ \frac{1}{2x\sqrt{x-1}}$$

1.
$$\frac{-2}{\sqrt{1-4x^2}}$$
 2. $\frac{2x}{(1+x^4)}$ 3. $\frac{1}{2x\sqrt{x-1}}$ 4. $\frac{1}{\sqrt{a^2-x^2}}$

5.
$$\frac{1}{x\{1+(\log x)^2\}}$$
 6.

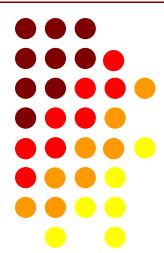
6.
$$\frac{-e^x}{(1+e^{2x})}$$

5.
$$\frac{1}{x\{1+(\log x)^2\}}$$
 6. $\frac{-e^x}{(1+e^{2x})}$ 7. $\frac{1}{(1+x^2)\tan^{-1}x}$ 8. $\frac{-3x^2}{(1+x^6)}$

9.
$$-1$$
 10. $(1 + 2x \tan^{-1}x)$ 11. -1

THANK YOU

Derivatives of Exponential, Logarithm and Parametric Form



Derivatives of Exponential and Logarithmic Functions

We have (i)
$$\frac{d}{dx}(e^x) = e^x$$
 (ii) $\frac{d}{dx}(\log x) = \frac{1}{x}$

(ii)
$$\frac{d}{dx}(a^x) = a^x(\log a)$$

EXAMPLE 1 Differentiate each of the following w.r.t. x:

$$(iii) e^{\cos x}$$

EXAMPLE 2 Differentiate each of the following w.r.t. x:

(i) $\sin(\log x)$, x > 0 (ii) $\log(\log x)$, x > 1

SOLUTION

(i) Let
$$y = \sin(\log x)$$
.

Putting
$$\log x = t$$
, we get
$$y = \sin t \text{ and } t = \log x$$

$$\Rightarrow \frac{dy}{dt} = \cos t \text{ and } \frac{dt}{dx} = \frac{1}{x}$$

$$\Rightarrow \frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{dx}\right) = \left(\cos t \times \frac{1}{x}\right) = \cos(\log x) \times \frac{1}{x} = \frac{\cos(\log x)}{x}.$$
Hence, $\frac{d}{dx} \{\sin(\log x)\} = \frac{\cos(\log x)}{x}.$

(ii) Let
$$y = \log(\log x)$$
.

Putting
$$\log x = t$$
, we get

$$y = \log t$$
 and $t = \log x$

$$\Rightarrow \frac{dy}{dt} = \frac{1}{t} \text{ and } \frac{dt}{dx} = \frac{1}{x}$$

$$\Rightarrow \frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{dx}\right) = \left(\frac{1}{t} \times \frac{1}{x}\right) = \left(\frac{1}{\log x} \times \frac{1}{x}\right) = \frac{1}{(x \log x)}$$

$$\therefore \frac{d}{dx} \{ \log (\log x) \} = \frac{1}{(x \log x)}.$$

 u_{Λ}

EXAMPLE 3 If
$$y = e^{\sqrt{\cot x}}$$
, find $\frac{dy}{dx}$.

SOLUTION Given:
$$y = e^{\sqrt{\cot x}}$$
.

Putting cot
$$x = t$$
 and $\sqrt{\cot x} = \sqrt{t} = u$, we get

$$y = e^u$$
, $u = \sqrt{t}$ and $t = \cot x$

$$\Rightarrow \frac{dy}{du} = e^u$$
, $\frac{du}{dt} = \frac{1}{2}t^{-1/2} = \frac{1}{2\sqrt{t}}$ and $\frac{dt}{dx} = -\csc^2 x$

$$\Rightarrow \frac{dy}{dx} = \left(\frac{dy}{du} \times \frac{du}{dt} \times \frac{dt}{dx}\right)$$

$$= \left\{e^{u} \cdot \frac{1}{2\sqrt{t}} \cdot (-\csc^{2}x)\right\} = e^{\sqrt{\cot x}} \cdot \frac{1}{2\sqrt{\cot x}} \cdot (-\csc^{2}x)$$

$$= \frac{(-\csc^2 x) e^{\sqrt{\cot x}}}{2\sqrt{\cot x}}.$$

EXAMPLE 4 If
$$y = \log \tan \frac{x}{2}$$
, find $\frac{dy}{dx}$.

SOLUTION Given: $y = \log \tan \frac{x}{2}$. Putting $\frac{x}{2} = t$ and $\tan \frac{x}{2} = \tan t = u$, we get $y = \log u$, $u = \tan t$ and $t = \frac{x}{2}$ $\Rightarrow \frac{dy}{du} = \frac{1}{u}, \frac{du}{dt} = \sec^2 t \text{ and } \frac{dt}{dx} = \frac{1}{2}$ $\Rightarrow \frac{dy}{dx} = \left(\frac{dy}{du} \times \frac{du}{dt} \times \frac{dt}{dx}\right)$

PRACTICE QUESTIONS

Differentiate each of the following w.r.t. x:

1. (i)
$$e^{4x}$$
 (ii) e^{-5x} (iii) e^{x^3}

1. (i)
$$e^{4x}$$
 (ii) e^{-5x} (iii) e^{x^3} 2. (i) $e^{\sqrt{x}}$ (ii) $e^{\sqrt{x}}$ (iii) $e^{-2\sqrt{x}}$

3. (i)
$$e^{\cot x}$$
 (ii) $e^{-\sin 2x}$ (iii) $e^{\sqrt{\sin x}}$

4. (i) tan (log x) (ii) log sec x (iii) log sin
$$\frac{x}{2}$$

5. (i)
$$\log_3 x$$
 (ii) 2^{-x} (iii) 3^{x+2}

6. (i)
$$\log \left(x + \frac{1}{x}\right)$$
 (ii) $\log \sin 3x$ (iii) $\log \left(x + \sqrt{1 + x^2}\right)$

EXAMPLE 1 Differentiate each of the following w.r.t. x:
$$(i) \tan^{-1} \left(\frac{1 - \cos x}{\sin x} \right) \qquad \qquad (ii) \tan^{-1} \left(\frac{\cos x - \sin x}{\cos x + \sin x} \right)$$

SOLUTION (i) Let
$$y = \tan^{-1} \left(\frac{1 - \cos x}{\sin x} \right) = \tan^{-1} \left\{ \frac{2\sin^2(x/2)}{2\sin(x/2)\cos(x/2)} \right\}$$

$$= \tan^{-1} \left\{ \tan \frac{x}{2} \right\} = \frac{x}{2}.$$

$$\therefore y = \frac{x}{2}.$$
Hence, $\frac{dy}{dx} = \frac{d}{dx} \left(\frac{x}{2} \right) = \frac{1}{2}.$

(ii) Let
$$y = \tan^{-1} \left(\frac{\cos x - \sin x}{\cos x + \sin x} \right) = \tan^{-1} \left(\frac{1 - \tan x}{1 + \tan x} \right)$$

[on dividing num. and denom. by $\cos x$]

$$= \tan^{-1} \left\{ \tan \left(\frac{\pi}{4} - x \right) \right\} = \left(\frac{\pi}{4} - x \right).$$

$$\therefore y = \left(\frac{\pi}{4} - x\right).$$

Hence,
$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{\pi}{4} - x \right) = \frac{d}{dx} \left(\frac{\pi}{4} \right) - \frac{d}{dx} (x) = (0-1) = -1.$$

EXAMPLE 2

Differentiate w.r.t. x:
$$(i) \tan^{-1} \left(\frac{\cos x}{1 + \sin x} \right)$$

(ii)
$$\tan^{-1}(\sec x + \tan x)$$

(i) Let
$$y = \tan^{-1} \left(\frac{\cos x}{1 + \sin x} \right) = \tan^{-1} \left\{ \frac{\sin \left(\frac{\pi}{2} - x \right)}{1 + \cos \left(\frac{\pi}{2} - x \right)} \right\}$$

$$= \tan^{-1} \left\{ \frac{2\sin\left(\frac{\pi}{4} - \frac{x}{2}\right)\cos\left(\frac{\pi}{4} - \frac{x}{2}\right)}{2\cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)} \right\}$$

$$= \tan^{-1} \left\{ \tan \left(\frac{\pi}{4} - \frac{x}{2} \right) \right\} = \left(\frac{\pi}{4} - \frac{x}{2} \right).$$

$$\therefore \quad y = \left(\frac{\pi}{4} - \frac{x}{2}\right).$$

Hence,
$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{\pi}{4} - \frac{x}{2} \right) = \frac{d}{dx} \left(\frac{\pi}{4} \right) - \frac{d}{dx} \left(\frac{x}{2} \right) = \left(0 - \frac{1}{2} \right) = \frac{-1}{2}$$
.

(ii) Let
$$y = \tan^{-1}(\sec x + \tan x)$$

$$= \tan^{-1}\left(\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right) = \tan^{-1}\left(\frac{1 + \sin x}{\cos x}\right)$$

$$= \tan^{-1}\left\{\frac{1 - \cos\left(\frac{\pi}{2} + x\right)}{\sin\left(\frac{\pi}{2} + x\right)}\right\}$$

$$\left\{\because \cos\left(\frac{\pi}{2} + x\right) = -\sin x; \sin\left(\frac{\pi}{2} + x\right) = \cos x\right\}$$

EXAMPLE 12 Differentiate
$$\tan^{-1} \left\{ \frac{\sqrt{1+x^2}-1}{x} \right\} w.r.t. x.$$

SOLUTION Let
$$y = \tan^{-1} \left\{ \frac{\sqrt{1 + x^2 - 1}}{x} \right\}$$
.

Putting $x = \tan \theta$, we get

$$y = \tan^{-1} \left\{ \frac{\sqrt{1 + \tan^2 \theta} - 1}{\tan \theta} \right\} = \tan^{-1} \left\{ \frac{\sec \theta - 1}{\tan \theta} \right\}$$

$$= \tan^{-1} \left\{ \frac{\left(\frac{1}{\cos \theta} - 1\right)}{\sin \theta} \cdot \cos \theta \right\} = \tan^{-1} \left(\frac{1 - \cos \theta}{\sin \theta}\right)$$

$$= \tan^{-1} \left\{ \frac{2\sin^2(\theta/2)}{2\sin(\theta/2)\cos(\theta/2)} \right\} = \tan^{-1} \left\{ \tan \frac{\theta}{2} \right\}$$

$$= \frac{\theta}{2} = \frac{1}{2} \tan^{-1} x.$$

$$\therefore y = \frac{1}{2} \tan^{-1} x$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{2} \cdot \frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{2(1+x^2)}.$$

Differentiate w.r.t. x:

(i)
$$\tan^{-1} \left\{ \sqrt{\frac{1+\cos x}{1-\cos x}} \right\}$$
 (ii) $\tan^{-1} \left\{ \sqrt{\frac{1+\sin x}{1-\sin x}} \right\}$

If
$$y = \tan^{-1} \frac{(\sqrt{1 + \sin x} + \sqrt{1 - \sin x})}{(\sqrt{1 + \sin x} - \sqrt{1 - \sin x})}$$
, find $\frac{dy}{dx}$.

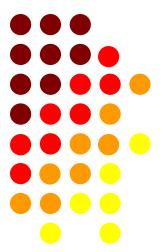
Differentiate w.r.t. x:

(i)
$$\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$
 (ii) $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ (iii) $\sec^{-1}\left(\frac{1}{2x^2-1}\right)$

THANK YOU

Lecture- 38

Logarithmic Differentiation & Derivative of implicit Function



EXAMPLE! Differentiate x^x w.r.t. x.

SOLUTION Let $y = x^x$.

Taking logarithm on both sides of (i), we get $\log y = x \log x$.

$$\frac{1}{y} \cdot \frac{dy}{dx} = x \cdot \frac{d}{dx} (\log x) + \log x \cdot \frac{d}{dx} (x)$$
$$= \left(x \cdot \frac{1}{x} + \log x \cdot 1\right) = (1 + \log x)$$

$$\Rightarrow \frac{dy}{dx} = y(1 + \log x)$$

$$\Rightarrow \frac{dy}{dx} = x^x (1 + \log x).$$

EXAMPLE: Differentiate $(\sin x)^x$ w.r.t. x.

SOLUTION Let $y = (\sin x)^x$.

Taking logarithm on both sides of (i), we get $\log y = x \log (\sin x)$.

$$\frac{1}{y} \cdot \frac{dy}{dx} = x \cdot \frac{d}{dx} \{ \log (\sin x) \} + \log (\sin x) \cdot \frac{d}{dx} (x)$$
$$= x \cdot \frac{1}{\sin x} \cdot \cos x + \log (\sin x) \cdot 1$$

$$= x \cot x + \log (\sin x)$$

$$\Rightarrow \frac{dy}{dx} = y \cdot [x \cot x + \log (\sin x)]$$

$$\Rightarrow \frac{dy}{dx} = (\sin x)^x [x \cot x + \log (\sin x)].$$

EXAMPLE Differentiate $(\sin x)^{\log x}$ w.r.t. x.

SOLUTION Let
$$y = (\sin x)^{\log x}$$
.

... (i)

Taking logarithm on both sides of (i), we get

$$\log y = (\log x)(\log \sin x).$$

... (ii)

$$\frac{1}{y} \cdot \frac{dy}{dx} = (\log x) \cdot \frac{d}{dx} (\log \sin x) + (\log \sin x) \cdot \frac{d}{dx} (\log x)$$

$$= (\log x) \cdot \frac{1}{\sin x} \cdot \cos x + (\log \sin x) \cdot \frac{1}{x}$$

$$= (\log x) \cot x + \frac{(\log \sin x)}{x}$$

$$\Rightarrow \frac{dy}{dx} = y \cdot \left[(\log x) \cot x + \frac{(\log \sin x)}{x} \right]$$

$$\Rightarrow \frac{dy}{dx} = (\sin x)^{\log x} \cdot \left[(\log x) \cot x + \frac{(\log \sin x)}{x} \right].$$

EXAMPLE If
$$y = (x)^{\cos x} + (\cos x)^{\sin x}$$
, find $\frac{dy}{dx}$.

SOLUTION Let y = u + v, where $u = (x)^{\cos x}$ and $v = (\cos x)^{\sin x}$.

Now,
$$u = (x)^{\cos x}$$

$$\Rightarrow \log u = (\cos x)(\log x)$$

$$\Rightarrow \frac{1}{u} \cdot \frac{du}{dx} = (\cos x) \cdot \frac{d}{dx} (\log x) + (\log x) \cdot \frac{d}{dx} (\cos x)$$

[on differentiating w.r.t. x]

$$= (\cos x) \cdot \frac{1}{x} + (\log x)(-\sin x)$$

$$\Rightarrow \frac{du}{dx} = u \cdot \left\{ \frac{\cos x}{x} - (\log x)(\sin x) \right\}$$

$$\Rightarrow \frac{du}{dx} = (x)^{\cos x} \left\{ \frac{\cos x}{x} - (\log x)(\sin x) \right\}. \tag{1}$$

Miet HEILP OF HASTITUMONA

And,
$$v = (\cos x)^{\sin x}$$

$$\Rightarrow \log v = (\sin x) \log (\cos x)$$

$$\Rightarrow \frac{1}{v} \cdot \frac{dv}{dx} = (\sin x) \cdot \frac{d}{dx} \{ \log (\cos x) \} + \log (\cos x) \cdot \frac{d}{dx} (\sin x)$$

[on differentiating w.r.t. x]

$$\Rightarrow \frac{dv}{dx} = v \cdot \left\{ (\sin x) \cdot \frac{(-\sin x)}{\cos x} + \log(\cos x) \cdot \cos x \right\}$$

$$\Rightarrow \frac{dv}{dx} = (\cos x)^{\sin x} \cdot \{-\sin x \tan x + \cos x \cdot \log (\cos x)\}. \qquad \dots (ii)$$

$$\therefore y = (u + v)$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$\Rightarrow \frac{dy}{dx} = (x)^{\cos x} \cdot \left\{ \frac{\cos x}{x} - (\log x) \sin x \right\}$$

+ $(\cos x)^{\sin x} \cdot {-\sin x \tan x + \cos x \cdot \log(\cos x)}$.

EXAMPLE: If
$$x^y = y^x$$
, find $\frac{dy}{dx}$.

EXAMPLE If $x^y = y^x$, find $\frac{dy}{dx}$.

SOLUTION Given: $x^y = y^x$

$$\Rightarrow y \log x = x \log y.$$

... (i)

$$y \cdot \frac{d}{dx} (\log x) + (\log x) \cdot \frac{d}{dx} (y) = x \cdot \frac{d}{dx} (\log y) + (\log y) \cdot \frac{d}{dx} (x)$$

$$\Rightarrow y \cdot \frac{1}{x} + (\log x) \cdot \frac{dy}{dx} = x \cdot \frac{1}{y} \cdot \frac{dy}{dx} + (\log y) \cdot 1$$

$$\Rightarrow \left(\log x - \frac{x}{y}\right) \frac{dy}{dx} = \left(\log y - \frac{y}{x}\right)$$

$$\Rightarrow \frac{(y \log x - x)}{y} \cdot \frac{dy}{dx} = \frac{(x \log y - y)}{x}$$

$$\Rightarrow \frac{dy}{dx} = \frac{y(x \log y - y)}{x(y \log x - x)}.$$

EXAMPLE' If
$$x^y = e^{x-y}$$
, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.

SOLUTION We have

$$x^{y} = e^{x-y} \implies y \log x = (x-y)$$

$$\implies (1 + \log x)y = x$$

$$\implies y = \frac{x}{(1 + \log x)} \cdot \dots (i)$$

$$\frac{dy}{dx} = \frac{(1 + \log x) \cdot \frac{d}{dx} (x) - x \cdot \frac{d}{dx} (1 + \log x)}{(1 + \log x)^2}$$

$$= \frac{(1 + \log x) \cdot 1 - x \cdot \frac{1}{x}}{(1 + \log x)^2} = \frac{(1 + \log x - 1)}{(1 + \log x)^2} = \frac{\log x}{(1 + \log x)^2}.$$

Differentiation of Implicit Function

EXAMPLE 1 If
$$x^3 + y^3 = 3axy$$
, find $\frac{dy}{dx}$.

SOLUTION Given: $x^3 + y^3 = 3axy$.

$$3x^2 + 3y^2 \cdot \frac{dy}{dx} = 3a \cdot \left\{ x \cdot \frac{dy}{dx} + y \cdot 1 \right\}$$

$$\Rightarrow 3(y^2 - ax) \cdot \frac{dy}{dx} = 3(ay - x^2)$$

$$\Rightarrow \frac{dy}{dx} = \left(\frac{ay - x^2}{y^2 - ax}\right).$$

EXAMPLE 2 If
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
, find $\frac{dy}{dx}$.

SOLUTION Given: $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$.

$$2ax + 2h\left(x \cdot \frac{dy}{dx} + y \cdot 1\right) + 2by \cdot \frac{dy}{dx} + 2g + 2f \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow (2ax + 2hy + 2g) + (2hx + 2by + 2f) \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\left(\frac{ax + hy + g}{hx + by + f}\right).$$

EXAMPLE 3 If
$$\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$$
, prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$.

SOLUTION Given:
$$\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$$
.

Putting $x = \sin \theta$ and $y = \sin \phi$, it becomes

 $\cos \theta + \cos \phi = a(\sin \theta - \sin \phi)$

$$\Rightarrow \frac{\cos \theta + \cos \phi}{\sin \theta - \sin \phi} = a$$

$$\Rightarrow \frac{2\cos\left(\frac{\theta+\phi}{2}\right)\cos\left(\frac{\theta-\phi}{2}\right)}{2\cos\left(\frac{\theta+\phi}{2}\right)\sin\left(\frac{\theta-\phi}{2}\right)} = a$$

$$\Rightarrow \cot\left(\frac{\theta-\phi}{2}\right) = a \Rightarrow \theta-\phi = 2\cot^{-1}a$$

$$\Rightarrow \sin^{-1}x - \sin^{-1}y = 2\cot^{-1}a.$$

$$\frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-y^2}} \cdot \frac{dy}{dx} = 0.$$

Hence,
$$\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$$
.

EXAMPLE If
$$\sin y = x \sin (a + y)$$
, prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$. [CBSE 2012]

SOLUTION
$$\sin y = x \sin (a + y)$$

$$\Rightarrow x = \frac{\sin y}{\sin (a + y)} \cdot \dots (i)$$

$$\frac{dx}{dy} = \frac{\sin(a+y)\cos y - \sin y \cos(a+y)}{\sin^2(a+y)}$$
 [using the quotient rule]
$$= \frac{\sin(a+y-y)}{\sin^2(a+y)} = \frac{\sin a}{\sin^2(a+y)}.$$

Hence,
$$\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$$
.

EXAMPLE If
$$e^x + e^y = e^{x+y}$$
, prove that $\frac{dy}{dx} = -e^{y-x}$.

SOLUTION Given: $e^x + e^y = e^{x+y}$.

On dividing throughout by e^{x+y} , we get $e^{-y} + e^{-x} = 1$.

$$e^{-y} \cdot \left(\frac{-dy}{dx}\right) + e^{-x}(-1) = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{-e^{-x}}{e^{-y}} = -e^{(y-x)}.$$

Find $\frac{dy}{dx}$, when:

1.
$$x^2 + y^2 = 4$$

$$2. \ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$3. \ \sqrt{x} + \sqrt{y} = \sqrt{a}$$

4.
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$

5.
$$xy = c^2$$

6.
$$x^2 + y^2 - 3xy = 1$$

7.
$$xy^2 - x^2y - 5 = 0$$

8.
$$(x^2 + y^2)^2 = xy$$

9.
$$x^2 + y^2 = \log(xy)$$

PRACTICE QUESTIONS

If
$$y \log x = (x - y)$$
, prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.

If
$$\cos y = x \cos(y + a)$$
, prove that $\frac{dy}{dx} = \frac{\cos^2(y + a)}{\sin a}$.

EXAMPLE If
$$x^y + y^x = a^b$$
, find $\frac{dy}{dx}$.

ANSWERS

$$1. \frac{-x}{y}$$

$$2. \frac{-b^2x}{a^2y}$$

3.
$$-\sqrt{\frac{y}{x}}$$

4.
$$\frac{-y^{1/3}}{\frac{1}{3}}$$

5.
$$\frac{-c^2}{x^2}$$

$$6. \frac{(2x-3y)}{(3x-2y)}$$

$$7. \frac{(y^2 - 2xy)}{(x^2 - 2xy)}$$

$$8. \frac{(y-4xy^2-4x^3)}{(4y^3+4x^2y-x)}$$

9.
$$\frac{y(1-2x^2)}{x(2y^2-1)}$$

EXAMPLE If
$$y = x^{x^x \dots \infty}$$
, prove that $\frac{dy}{dx} = \frac{y^2}{x(1 - y \log x)}$.

So, we may write the given function as $y = x^y$.

Now,
$$y = x^y \Rightarrow \log y = y \log x$$
.

$$\frac{1}{y} \cdot \frac{dy}{dx} = y \cdot \frac{1}{x} + \log x \cdot \frac{dy}{dx}$$

$$\Rightarrow \left(\frac{1}{y} - \log x\right) \frac{dy}{dx} = \frac{y}{x}$$

$$\Rightarrow \frac{(1-y\log x)}{y} \cdot \frac{dy}{dx} = \frac{y}{x}$$

$$\Rightarrow \frac{(1 - y \log x)}{y} \cdot \frac{dy}{dx} = \frac{y}{x}$$

$$\frac{dy}{dx} = \left\{ \frac{y}{x} \times \frac{y}{(1 - y \log x)} \right\} \Rightarrow \frac{dy}{dx} = \frac{y^2}{x(1 - y \log x)}.$$

EXAMPLE: If
$$y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots + \cos x}}}$$
, prove that $\frac{dy}{dx} = \frac{\cos x}{(2y-1)}$.

SOLUTION We may write the given series as

$$y = \sqrt{\sin x + y} \implies y^2 = (\sin x + y).$$

$$2y \cdot \frac{dy}{dx} = \cos x + \frac{dy}{dx}$$

$$\Rightarrow (2y-1) \cdot \frac{dy}{dx} = \cos x$$

$$\Rightarrow \frac{dy}{dx} = \frac{\cos x}{(2y-1)}$$

... (i)

EXAMPLE 3 If
$$y = e^{x+e^{x+e^{x+e^{x+\dots to \infty}}}}$$
, prove that $\frac{dy}{dx} = \frac{y}{(1-y)}$.

SOLUTION We may write the given series as

$$y = e^{x+y} \implies \log y = (x+y).$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = 1 + \frac{dy}{dx}$$

$$\Rightarrow \left(\frac{1}{y} - 1\right) \frac{dy}{dx} = 1$$

$$\Rightarrow \frac{(1 - y)}{y} \cdot \frac{dy}{dx} = 1$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{(1 - y)}$$

EXAMPLE Differentiate $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ w.r.t. $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$.

SOLUTION Let
$$u = \sin^{-1} \left(\frac{2x}{1+x^2} \right)$$
 and $v = \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right)$.

Putting $x = \tan \theta$, we get

$$u = \sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right) = \sin^{-1}(\sin 2\theta) = 2\theta,$$

$$v = \cos^{-1}\left(\frac{1 - \tan^2\theta}{1 + \tan^2\theta}\right) = \cos^{-1}(\cos 2\theta) = 2\theta.$$

$$\therefore \quad u = v \implies \frac{du}{dv} = 1.$$

EXAMPLE Differentiate
$$\tan^{-1} \left(\frac{2x}{1-x^2} \right) w.r.t. \sin^{-1} \left(\frac{2x}{1+x^2} \right)$$
.

SOLUTION Let
$$u = \tan^{-1} \left(\frac{2x}{1 - x^2} \right)$$
 and $v = \sin^{-1} \left(\frac{2x}{1 + x^2} \right)$.

Putting $x = \tan \theta$, we get

$$u = \tan^{-1} \left(\frac{2 \tan \theta}{1 - \tan^2 \theta} \right) = \tan^{-1} (\tan 2\theta) = 2\theta,$$

$$v = \sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right) = \sin^{-1}(\sin 2\theta) = 2\theta.$$

$$\therefore \quad u = v \implies \frac{du}{dv} = 1.$$

EXAMPLE Differentiate
$$\tan^{-1} \left\{ \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right\} w.r.t. \cos^{-1} x^2$$

SOLUTION Let
$$u = \tan^{-1} \left\{ \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right\}$$
 and $v = \cos^{-1} x^2$.

Then,
$$\cos^{-1}x^2 = v \implies x^2 = \cos v$$
.

Putting $x^2 = \cos v$, we get

$$u = \tan^{-1} \left\{ \frac{\sqrt{1 + \cos v} - \sqrt{1 - \cos v}}{\sqrt{1 + \cos v} + \sqrt{1 - \cos v}} \right\}$$
$$= \tan^{-1} \left\{ \frac{\sqrt{2\cos^2(v/2)} - \sqrt{2\sin^2(v/2)}}{\sqrt{2\cos^2(v/2)} + \sqrt{2\sin^2(v/2)}} \right\}$$

$$= \tan^{-1} \left\{ \frac{\cos(v/2) - \sin(v/2)}{\cos(v/2) + \sin(v/2)} \right\} = \tan^{-1} \left\{ \frac{1 - \tan(v/2)}{1 + \tan(v/2)} \right\}$$

[dividing num. and denom. by $\cos(v/2)$]

$$= \tan^{-1} \left\{ \tan \left(\frac{\pi}{4} - \frac{v}{2} \right) \right\} = \left(\frac{\pi}{4} - \frac{v}{2} \right).$$

$$\therefore u = \left(\frac{\pi}{4} - \frac{v}{2}\right) \Rightarrow \frac{du}{dv} = \frac{-1}{2}.$$

. Derivatives of Parametric Functions

Sometimes *x* and *y* are given as functions of a variable *t*. Then, *t* is called a parameter.

Let
$$x = f(t)$$
 and $y = g(t)$. Then,

$$\frac{dx}{dt} = f'(t) \text{ and } \frac{dy}{dt} = g'(t).$$

$$\therefore \frac{dy}{dx} = \frac{(dy/dt)}{(dx/dt)} = \frac{g'(t)}{f'(t)}, \text{ where } f'(t) \neq 0.$$

SUMMARY

Let
$$x = f(t)$$
 and $y = g(t)$. Then,

$$\frac{dy}{dx} = \frac{(dy/dt)}{(dx/dt)} = \frac{g'(t)}{f'(t)}, \text{ where } f'(t) \neq 0.$$

EXAMPLE 1 Find
$$\frac{dy}{dx}$$
, when $x = a(t + \sin t)$ and $y = a(1 - \cos t)$.

SOLUTION We have:

$$x = a(t + \sin t) \Rightarrow \frac{dx}{dt} = a(1 + \cos t);$$

$$y = a(1 - \cos t) \Rightarrow \frac{dy}{dt} = a \sin t.$$

$$\therefore \frac{dy}{dx} = \left(\frac{dy}{dt} \times \frac{dt}{dx}\right) = \frac{a \sin t}{a(1 + \cos t)} = \frac{2a \sin(t/2) \cos(t/2)}{2a \cos^2(t/2)} = \tan \frac{t}{2}$$

EXAMPLE 2 If $x = a[\cos \theta + \log \tan (\theta/2)]$ and $y = a \sin \theta$, find $\frac{dy}{dx}$ at $\theta = (\pi/4)$.

SOLUTION We have

$$x = a(\cos \theta + \log \tan (\theta/2))$$

$$\Rightarrow \frac{dx}{d\theta} = a \left\{ -\sin \theta + \frac{\sec^2(\theta/2)}{2\tan(\theta/2)} \right\} = a \left\{ -\sin \theta + \frac{1}{2\sin(\theta/2)\cos(\theta/2)} \right\}$$
$$= a \left\{ -\sin \theta + \frac{1}{\sin \theta} \right\} = \frac{a(1 - \sin^2 \theta)}{\sin \theta} = \frac{a\cos^2 \theta}{\sin \theta}.$$

And,
$$y = a \sin \theta \Rightarrow \frac{dy}{d\theta} = a \cos \theta$$
.

$$\therefore \frac{dy}{dx} = \left(\frac{dy}{d\theta} \times \frac{d\theta}{dx}\right) = \left(a\cos\theta \cdot \frac{\sin\theta}{a\cos^2\theta}\right) = \tan\theta.$$

$$\therefore \left[\frac{dy}{dx}\right]_{\theta=\pi/4} = \tan\frac{\pi}{4} = 1.$$

THANK YOU

