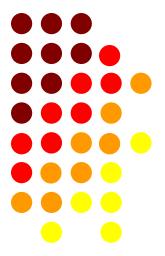


Rolls theorem & its Geometric Interpretations



Rolle's Theorem

Let f be a real-valued function, defined in the closed interval [a, b] such that

- (i) f is continuous on [a, b]; (ii) f is differentiable on [a, b];
- (iii) f(a) = f(b).

Then, there exists a real number c in the open interval]a, b[such that f'(c) = 0

GEOMETRICAL SIGNIFICANCE OF ROLLE'S THEOREM Let f be a real function defined on [a, b] and let Rolle's theorem be applicable on it. Then, f being continuous on [a, b], it follows that we can draw a graph of f(x) between the values x = a and x = b.

Also, f(x) being differentiable in a, b, it follows that the graph of f(x) has a tangent at each point of a, b.

Now, the existence of a real number $c \in]a$, b[such that f'(c) = 0 shows that the tangent to the curve at x = c has a slope 0, i.e., it is parallel to the x-axis.

EXAMPLE 1 Verify Rolle's theorem for the function $f(x) = x^3 - 6x^2 + 11x - 6$ in the interval [1, 3].

SOLUTION Here, we observe that

- (i) f(x) being a polynomial function of x, is continuous on the interval [1, 3].
- (ii) $f'(x) = 3x^2 12x + 11$, which clearly exists for all values of $x \in [1, 3]$.

So, f(x) is differentiable on the open interval]1, 3[.

(iii)
$$f(1) = (1^3 - 6 \times 1^2 + 11 \times 1 - 6) = 0$$

and $f(3) = (3^3 - 6 \times 3^2 + 11 \times 3 - 6) = 0$
 $f(1) = f(3)$.

Thus, all the conditions of Rolle's theorem are satisfied. So, there must exist some $c \in]1$, 3[such that f'(c) = 0.

Now,
$$f'(c) = 0 \Rightarrow 3c^2 - 12c + 11 = 0$$

$$\Rightarrow c = \frac{12 \pm \sqrt{144 - 132}}{6} \Rightarrow c = \left(2 \pm \frac{1}{\sqrt{3}}\right).$$

Clearly, both the values of c lie in the interval]1, 3[.

Hence, Rolle's theorem is verified.

EXAMPLE 2 Verify Rolle's theorem for the function $f(x) = x(x-1)^2$ in the interval [0, 1].

We have $f(x) = x^3 - 2x^2 + x$. SOLUTION

We observe here that

- (i) f(x) being a polynomial function, is continuous on [0, 1].
- (ii) $f'(x) = (3x^2 4x + 1)$, which clearly exists for all values of $x \in [0, 1].$

So, f(x) is differentiable on the interval [0, 1[.

(iii)
$$f(0) = 0$$
 and $f(1) = 0$.

$$f(0) = f(1)$$
.

Thus, all the conditions of Rolle's theorem are satisfied.

So, there must exist a real number $c \in [0, 1]$ such that f'(c) = 0.

Now,
$$f'(c) = 0 \Rightarrow 3c^2 - 4c + 1 = 0 \Rightarrow (c-1)(3c-1) = 0$$

 $\Rightarrow c = 1 \text{ or } c = \frac{1}{3}$.
Out of these two values, clearly $\frac{1}{3} \in]0, 1[$.

Thus,
$$c = \frac{1}{3} \in]0$$
, 1[such that $f'(c) = 0$.

Hence, Rolle's theorem is satisfied.

EXAMPLE 4 Verify Rolle's theorem for each of the following functions:

(i)
$$f(x) = \sin 2x \ in \left[0, \frac{\pi}{2}\right]$$

(ii)
$$f(x) = (\sin x + \cos x)$$
 in $\left[0, \frac{\pi}{2}\right]$

(iii)
$$f(x) = \cos 2\left(x - \frac{\pi}{4}\right) in \left[0, \frac{\pi}{2}\right]$$

(iv)
$$f(x) = (\sin x - \sin 2x) \text{ in } [0, \pi]$$

SOLUTION

(i) Consider
$$f(x) = \sin 2x$$
 in $\left[0, \frac{\pi}{2}\right]$.

Since the sine function is continuous at each $x \in R$, it follows that $f(x) = \sin 2x$ is continuous on $\left[0, \frac{\pi}{2}\right]$.

Also,
$$f'(x) = 2\cos 2x$$
, which clearly exists for all $x \in \left[0, \frac{\pi}{2}\right]$.

So, f(x) is differentiable on $\left]0, \frac{\pi}{2}\right[$.

Also,
$$f(0) = f\left(\frac{\pi}{2}\right) = 0.$$

Thus, all the conditions of Rolle's theorem are satisfied. So, there must exist a real number $c \in \left[0, \frac{\pi}{2}\right[$ such that f'(c) = 0.

Now,
$$f'(c) = 0 \Leftrightarrow 2\cos 2c = 0 \Leftrightarrow \cos 2c = 0$$

 $\Leftrightarrow 2c = \frac{\pi}{2}$, i.e., $c = \frac{\pi}{4}$.

Thus,
$$c = \frac{\pi}{4} \in \left[0, \frac{\pi}{2}\right]$$
 such that $f'(c) = 0$.

Hence, Rolle's theorem is verified.

(ii) Consider $f(x) = (\sin x + \cos x)$ in $\left[0, \frac{\pi}{2}\right]$.

By the continuity of the sine function, the cosine function and the sum of continuous functions, it follows that f(x) is continuous on $\left[0, \frac{\pi}{2}\right]$.

Also, $f'(x) = (\cos x - \sin x)$, which clearly exists for all values of $x \in \left[0, \frac{\pi}{2}\right]$.

So, f(x) is differentiable on $\left[0, \frac{\pi}{2}\right]$. Also, $f(0) = f\left(\frac{\pi}{2}\right) = 1$.

Thus, all the conditions of Rolle's theorem are satisfied. So, there must exist some $c \in \left[0, \frac{\pi}{2}\right]$ such that f'(c) = 0.

Now, $f'(c) = 0 \Leftrightarrow \cos c - \sin c = 0 \Leftrightarrow \cos c = \sin c \Leftrightarrow c = \frac{\pi}{4}$

Thus, $c = \frac{\pi}{4} \in \left[0, \frac{\pi}{2} \right]$ such that f'(c) = 0.

Hence, Rolle's theorem is verified.

(iii) Consider
$$f(x) = \cos 2\left(x - \frac{\pi}{4}\right)$$
 in $\left[0, \frac{\pi}{2}\right]$.

Since the cosine function is continuous everywhere,

follows that
$$f(x) = \cos 2\left(x - \frac{\pi}{4}\right)$$
 is continuous on $\left[0, \frac{\pi}{2}\right]$.

Also, $f'(x) = -2\sin\left(2x - \frac{\pi}{2}\right) = 2\cos 2x$, which clearly exists for all $x \in \left[0, \frac{\pi}{2}\right]$.

 \therefore f(x) is differentiable on $\left]0, \frac{\pi}{2}\right[$.

Further, $f(0) = \cos 2\left(-\frac{\pi}{4}\right) = \cos\frac{\pi}{2} = 0.$

And,
$$f\left(\frac{\pi}{2}\right) = \cos 2\left(\frac{\pi}{2} - \frac{\pi}{4}\right) = \cos\frac{\pi}{2} = 0$$

$$f(0) = f\left(\frac{\pi}{2}\right) = 0$$

Thus, all the conditions of Rolle's theorem are satisfied. So, there must exist $c \in \left[0, \frac{\pi}{2}\right]$ such that f'(c) = 0.

Now, $f'(c) = 0 \Leftrightarrow 2\cos 2c = 0 \Leftrightarrow 2c = \frac{\pi}{2} \Rightarrow c = \frac{\pi}{4}$

Thus,
$$c = \frac{\pi}{4} \in \left]0, \frac{\pi}{2}\right[\text{ such that } f'(c) = 0.$$

Hence, Rolle's theorem is verified.

(iv) Consider $f(x) = (\sin x - \sin 2x) \text{ in } [0, \pi]$.

Since the sine function is continuous, it follows that $g(x) = \sin x$ and $h(x) = \sin 2x$ are both continuous and so their difference is also continuous.

Consequently, f(x) = g(x) - h(x) is differentiable on $[0, \pi]$.

Also, $f'(x) = (\cos x - 2 \cos 2x)$, which clearly exists for all $x \in [0, \pi]$.

f(x) is differentiable on $]0, \pi[$.

And,
$$f(0) = f(\pi) = 0$$

Thus, all the conditions of Rolle's theorem are satisfied. So, there must exist a real number $c \in]0$, $\pi[$ such that f'(c) = 0.

Now,
$$f'(c) = 0 \Leftrightarrow \cos c - 2\cos 2c = 0$$

 $\Leftrightarrow \cos c - 2(2\cos^2 c - 1) = 0$
 $\Leftrightarrow 4\cos^2 c - \cos c - 2 = 0$
 $\Leftrightarrow \cos c = \frac{1 \pm \sqrt{33}}{8} = 0.8431 \text{ or } -0.5931$
 $\Leftrightarrow \cos c = 0.8431 \text{ or } \cos(180^\circ - c) = 0.5931.$
 $\Leftrightarrow c = 32^\circ \cdot 32' \text{ or } c = 126^\circ 23'.$

Thus, $c \in]0$, $\pi[$ such that f'(c) = 0.

Hence, Rolle's theorem is satisfied.

PRACTICE QUESTIONS

Discuss the applicability of Rolle's theorem, when:

$$f(x) = (x-1)(2x-3)$$
, where $1 \le x \le 3$
 $f(x) = x^{1/2}$ on $[-1, 1]$
 $f(x) = 2 + (x-1)^{2/3}$ on $[0, 2]$

Using Rolle's theorem, find the point on the curve y = x(x-4), $x \in [0, 4]$, where the tangent is parallel to the x-axis.

ANSWERS

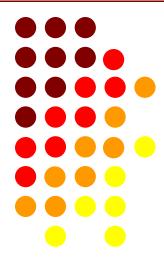
- Not applicable, since f(1) ≠ f(3)
- Not applicable, since f'(0) does not exist
- 4. Not applicable, since f'(1) does not exist

$$(2, -4)$$

THANK YOU

Lecture- 40

Lagrange's theorem & its Geometric Interpretations



Lagrange's Mean value theorems let for be a seal function, such that (i) fra) is continuous on [a16] (ii) fea) is diffesentiable on (915) Then, these exist atleast one ce (a/b) such f'(c)= f(b)-f(a) that

Example: Verity Lagrange's mean-value theorem
for the function for = 1, 1 = 2 = 4

GEOMETRICAL SIGNIFICANCE OF THE MEAN-VALUE THEOREM Let y = f(x) be a given function defined on [a, b], which is continuous on [a, b] and differentiable on [a, b].

Then, by Lagrange's mean-value theorem, there exists some $c \in]a, b[$ such that $f'(c) = \frac{f(b) - f(a)}{(b-a)} \qquad \dots (i)$

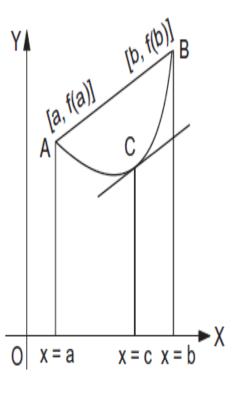
Now, if we draw the curve y = f(x) and take the YA

points A[a, f(a)] and B[b, f(b)] on the curve then

slope of chord
$$AB = \frac{f(b) - f(a)}{(b - a)}$$
 ... (ii)

Thus, from (i) and (ii), we have f'(c) = slope of chord AB.

This shows that the tangent to the curve y = f(x) at the point x = cis parallel to the chord AB.



Example: Verity Lagrange's mean-value bream for one function $f(x) = \frac{1}{4x-1}$, $1 \le x \le 4$ solution: clearly, for each ne [14], fix) has a définite à unique value so fra) is continuous for all 20[14] Also, f'(2) = -4 which exist for all en for is differentiable on (44) -) Both the conditions of logsange's mean value theorem are satisfied so there must exist some ce(14) such

now
$$f'(c) = -\frac{4}{45}$$
 $\Rightarrow -\frac{4}{45-1}^2 = -\frac{4}{45}$
 $(4c-1)^2 = 45 \Rightarrow 4c-1 = \pm 3\sqrt{5}$
 $c = 1\pm 3\sqrt{5}$, clearly $c = 1\pm 3\sqrt{5} = 1.92$
Lies in (14)
 $\Rightarrow \text{ lagrange's mean value pheasem is vesified.}$

EXAMPLE Verify Rolle's theorem for the function $f(x) = x(x+3)e^{-(x/2)}$ in [-3, 0].

Verify Rolle's theorem for the function $f(x) = x(x+3)e^{-(x/2)}$ *in* [-3, 0].

SOLUTION

Since a polynomial function as well as an exponential function is continuous and the product of two continuous functions is continuous, it follows that f(x) is continuous on the given interval [-3, 0].

Now,
$$f'(x) = (2x+3)e^{-(x/2)} - \frac{1}{2}e^{-(x/2)}(x^2 + 3x)$$

= $e^{-(x/2)} \left(\frac{x+6-x^2}{2}\right)$,

which is clearly finite for all values of x in]-3, 0[.

So, f(x) is differentiable on]-3, 0[. Also, f(-3) = f(0) = 0.

Thus, all the conditions of Rolle's theorem are satisfied.

So, there must exist $c \in]-3$, 0[such that f'(c) = 0.

But,
$$f'(c) = 0 \iff e^{-(c/2)} \left(\frac{c + 6 - c^2}{2} \right) = 0 \iff c + 6 - c^2 = 0$$

$$\Leftrightarrow$$
 $(3-c)(c+2)=0 \Leftrightarrow c=3 \text{ or } c=-2.$

Thus, $c = -2 \in]-3$, 0[such that f'(c) = 0.

Hence, Rolle's theorem is verified.

EXAMPLE Discuss the applicability of Rolle's theorem on:

$$f(x) = |x| in [-1, 1]$$

Discuss the applicability of Rolle's theorem on:

$$f(x) = |x| in [-1, 1]$$

SOLUTION

Consider f(x) = |x| in [-1, 1].

We may express it as
$$f(x) = \begin{cases} -x & \text{when } -1 \le x < 0 \\ x & \text{when } 0 \le x \le 1 \end{cases}$$

Clearly,
$$f(-1) = f(1) = 1$$
.

But,
$$Rf'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|}{h} = \lim_{h \to 0} \frac{h}{h} = 1.$$

And,

$$Lf'(0) = \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h} = \lim_{h \to 0} \frac{|-h|}{-h} = \lim_{h \to 0} \frac{h}{-h} = -1.$$

$$\therefore Rf'(0) \neq Lf'(0).$$

This shows that f(x) is not differentiable at x = 0.

Thus, the condition of differentiability at each point of the given interval is not satisfied.

EXAMPLE Find a point on the parabola $y = (x - 3)^2$, where the tangent is parallel to the chord joining (3, 0) and (4, 1).

EXAMPLE

Find a point on the parabola $y = (x - 3)^2$, where the tangent is parallel to the chord joining (3, 0) and (4, 1).

SOLUTION

Let us apply Lagrange's mean-value theorem for the function $f(x) = (x - 3)^2$ in the interval [3, 4].

Now, f(x) being a polynomial function, it is continuous on [3, 4].

Also, f'(x) = 2(x - 3), which exists for all $x \in]3, 4[$.

So, f(x) is differentiable on]3, 4[.

Thus, both the conditions of Lagrange's mean-value theorem are satisfied.

So, there must exist a point $c \in]3$, 4[such that

$$f'(c) = \frac{f(4) - f(3)}{(4-3)} = 1.$$

Now,
$$f'(c) = 1 \Leftrightarrow 2(c-3) = 1 \Leftrightarrow c = \frac{7}{2} \in]3, 4[.$$

Now,
$$x = \frac{7}{2}$$
 and $y = (x - 3)^2 \iff y = \frac{1}{4}$.

Thus, at the point $\left(\frac{7}{2}, \frac{1}{4}\right)$ on the given curve the tangent is parallel to the chord joining (3, 0) and (4, 1).

EXAMPLE

Verify Lagrange's mean-value theorem for the following functions:

$$f(x) = x(2-x)$$
 in [0, 1]

EXAMPLE

Verify Lagrange's mean-value theorem for the following functions: f(x) = x(2-x) in [0, 1]

SOLUTION

Consider f(x) = x(2-x) in [0, 1].

The given function is $f(x) = 2x - x^2$.

It, being a polynomial function, is continuous on [0, 1].

Also, f'(x) = 2 - 2x, which exists for all x in [0, 1].

So, f(x) is differentiable on]0, 1[.

Thus, both the conditions of Lagrange's mean-value theorem are satisfied.

So, there must exist some $c \in]0,1[$ such that

$$f'(c) = \frac{f(1) - f(0)}{(1 - 0)} = 1.$$

Now,
$$f'(c) = 1 \Leftrightarrow 2-2c = 1 \Leftrightarrow c = \frac{1}{2} \in]0, 1[.$$

Thus,
$$c = \frac{1}{2} \in]0$$
, 1[such that $f'(c) = \frac{f(1) - f(0)}{1 - 0}$.

Hence, Lagrange's mean value theorem is verified.

Practice Questions

Q 1: Verify Rolle's Theorem

$$f(x) = \sqrt{4 - x^2} \text{ in } [-2, 2].$$

Ans: Applicable C=0

Q 2: Discuss the applicability of Rolle's theorem, when:

$$f(x) = x^{1/2}$$
 on $[-1, 1]$

Ans: Not applicable, since f'(0) does not exist

Q 3:

Show that Lagrange's mean-value theorem is not applicable to $f(x) = \frac{1}{x}$ on [-1, 1].

Q 4:

Find c of Lagrange's mean-value theorem for

(i)
$$f(x) = (x^3 - 3x^2 + 2x) \text{ on } \left[0, \frac{1}{2}\right]$$

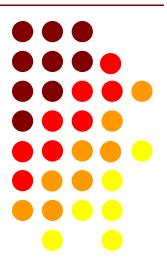
(ii)
$$f(x) = \sqrt{25 - x^2}$$
 on $[1, 5]$

Ans: (i)
$$1 - \sqrt{\frac{7}{12}}$$
 (ii) $\sqrt{15}$

Thank You

LECTURE NO. -41

Tangent & Normal to a given Curve



Increasing decreasing Function

5. Increasing and Decreasing Functions

INCREASING FUNCTION A function f(x) defined on]a, b[is said to be increasing if

$$x_1 < x_2 \implies f(x_1) \le f(x_2)$$
 for all $x_1, x_2 \in]a, b[$

or
$$x_1 > x_2 \implies f(x_1) \ge f(x_2)$$
 for all $x_1, x_2 \in]a, b[$.

STRICTLY INCREASING FUNCTION A function f(x) defined on a, b[is said to be strictly increasing if

$$x_1 < x_2 \implies f(x_1) < f(x_2) \text{ for all } x_1, x_2 \in]a, b[$$

or
$$x_1 > x_2 \implies f(x_1) > f(x_2)$$
 for all $x_1, x_2 \in]a, b[$.

DECREASING FUNCTION A function f(x) defined on]a, b[is said to be decreasing if

$$x_1 < x_2 \implies f(x_1) \ge f(x_2)$$
 for all $x_1, x_2 \in]a, b[$

or
$$x_1 > x_2 \implies f(x_1) \le f(x_2)$$
 for all $x_1, x_2 \in [a, b[$.

STRICTLY DECREASING FUNCTION A function f(x) defined on]a, b[is said to be strictly decreasing if

$$x_1 < x_2 \implies f(x_1) > f(x_2) \text{ for all } x_1, x_2 \in [a, b[$$

or
$$x_1 > x_2 \implies f(x_1) < f(x_2)$$
 for all $x_1, x_2 \in]a, b[$.

EXAMPLE 1 Show that f(x) = 3x + 5 is a strictly increasing function on R.

SOLUTION Let $x_1, x_2 \in R$ such that $x_1 < x_2$. Then,

$$x_1 < x_2 \implies 3x_1 < 3x_2$$

 $\Rightarrow 3x_1 + 5 < 3x_2 + 5$
 $\Rightarrow f(x_1) < f(x_2).$

Tangents and Normals

THEOREM 1 Prove that the equation of a tangent to a curve y = f(x) at a point $P(x_1, y_1)$ is given by $\frac{y - y_1}{x - x_1} = \left(\frac{dy}{dx}\right)_{(x_2, y_1)}$,

$$(dx)_{(x_1,y_1)}$$

THEOREM 2 The tangent to a curve y = f(x) at a point $P(x_1, y_1)$ is parallel to the x-axis if and only if $\left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 0$.

PROOF The tangent is parallel to the x-axis \Leftrightarrow its slope is 0

$$\Leftrightarrow \left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 0.$$

THEOREM 3 The tangent to a curve y = f(x) at a point $P(x_1, y_1)$ is parallel to the y-axis if and only if $\left(\frac{dx}{dy}\right)_{(x_1, y_1)} = 0$.

. . _

EXAMPLE 2 Find the equations of the tangent and the normal to the curve $y = x^2 + 4x + 1$ at the point where x = 3.

SOLUTION When x = 3, we have $y = (3^2 + 4 \times 3 + 1) = 22$.

So, the point of contact is (3, 22).

Now,
$$y = x^2 + 4x + 1 \Rightarrow \frac{dy}{dx} = 2x + 4 \Rightarrow \left(\frac{dy}{dx}\right)_{(3,22)} = (2 \times 3 + 4) = 10.$$

Equation of the tangent is $\frac{y-22}{x-30} = 10 \implies 10x - y - 278 = 0$.

And, equation of the normal is $\frac{y-22}{x-3} = \frac{-1}{10} \implies x+10y-223 = 0$.

Find the equations of the tangent and the normal to the curve EXAMPLE 1

$$y = x^4 - 6x^3 + 13x^2 - 10x + 5$$
 at the point (1, 3).

The equation of the given curve is $y = x^4 - 6x^3 + 13x^2 - 10x + 5$. SOLUTION

$$\frac{dy}{dx} = 4x^3 - 18x^2 + 26x - 10$$

$$\frac{dy}{dx} = 4x^3 - 18x^2 + 26x - 10.$$
So, $\left(\frac{dy}{dx}\right)_{(1, 3)} = (4 \times 1^3 - 18 \times 1^2 + 26 \times 1 - 10) = 2.$

... the required equation of the tangent is

$$\frac{y-3}{x-1} = 2$$
 or $2x-y+1=0$.

And, the required equation of the normal is

$$\frac{y-3}{x-1} = \frac{-1}{2}$$
 or $x + 2y - 7 = 0$.

1. Derivative as a Rate Measure

Rate of Change of Quantities

Let y = f(x). Then, $\frac{dy}{dx}$ denotes the rate of change of y w.r.t. x and its value at x = a is denoted by $\left[\frac{dy}{dx}\right]_{x=a}$.

If
$$x = f(t)$$
, $y = g(t)$ then by chain rule, we have
$$\frac{dy}{dx} = \frac{(dy/dt)}{(dx/dt)} = \left(\frac{dy}{dt} \cdot \frac{dt}{dx}\right).$$

EXAMPLE 1 Find the rate of change of the area of a circle with respect to its radius r when r = 6 cm.

SOLUTION Let A be the area of a circle of radius r. Then,

$$A = \pi r^2 \implies \frac{dA}{dr} = \frac{d}{dr}(\pi r^2) = 2\pi r$$

$$\Rightarrow \left[\frac{dA}{dr}\right]_{r=6 \text{ cm}} = (2\pi \times 6)\text{cm}^2/\text{cm} = (12\pi)\text{cm}^2/\text{cm}.$$

Hence, the area is changing at the rate of (12π) cm²/cm.

. .

EXAMPLE 2 A stone is dropped into a quiet lake and the waves move in circles. If the radius of a circular wave increases at the rate of 4 cm/sec, find the rate of increase in its area at the instant when its radius is 10 cm.

SOLUTION At any instant t, let the radius of the circle be r cm and its area be $A \text{ cm}^2$. Then,

$$\frac{dr}{dt} = 4 \text{ cm/sec}$$
 (given) ... (i)

Now,
$$A = \pi r^2 \Rightarrow \frac{dA}{dt} = \left(\frac{dA}{dr} \cdot \frac{dr}{dt}\right)$$

$$= \frac{d}{dr} (\pi r^2) \cdot 4 \quad \left[\because A = \pi r^2 \text{ and } \frac{dr}{dt} = 4 \right]$$

$$= (2\pi r \times 4) \text{ cm}^2/\text{sec} = (8\pi r) \text{ cm}^2/\text{sec}$$

$$\Rightarrow \left[\frac{dA}{dt}\right]_{r=10} = (8\pi \times 10) \text{ cm}^2/\text{sec} = (80\pi) \text{ cm}^2/\text{sec}.$$

Hence, the area of the circle is increasing at the rate of (80π) cm²/sec at the instant when r = 10 cm.

EXAMPLE 3 A spherical soap bubble is expanding so that its radius is increasing at the rate of 0.02 cm/sec. At what rate is the surface area increasing when its radius is 5 cm? (Take $\pi = 3.14$.)

SOLUTION A soap bubble is in the form of a sphere. At an instant t, let its radius be r and surface area S. Then,

$$\frac{dr}{dt} = 0.02 \text{ cm/sec} \quad \text{(given)} \qquad \dots \text{(i)}$$

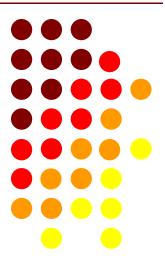
Now, $S = 4\pi r^2$

$$\Rightarrow \frac{dS}{dt} = 8\pi r \cdot \frac{dr}{dt} = (8 \times 3.14 \times r \times 0.02) \text{ cm}^2/\text{sec}$$

$$\Rightarrow \left[\frac{dS}{dt}\right]_{r=5} = (8 \times 3.14 \times 5 \times 0.02) \text{cm}^2/\text{sec} = 2.512 \text{ cm}^2/\text{sec}.$$

Hence, the surface area of the bubble is increasing at the rate of 2.512 cm²/sec at the instance when its radius is 5 cm.

Approximation & Errors



2. Errors and Approximation

Let
$$y = f(x)$$
. Then, $\lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} = f'(x)$.

$$\therefore \frac{f(x+\delta x)-f(x)}{\delta x} = f'(x) + \in \text{, where } \in \to 0 \text{ when } \delta x \to 0$$

$$\Rightarrow f(x + \delta x) - f(x) = f'(x) \cdot \delta x + \epsilon \cdot \delta x$$

$$\Rightarrow f(x + \delta x) - f(x) = f'(x) \cdot \delta x$$
 (approximately)

$$\Rightarrow \delta y = f'(x) \cdot \delta x$$
 [:: $f(x + \delta x) - f(x) = \delta y$].

Thus, if δx is an error in x then the corresponding error in y is δy . These small values δx and δy are called *differentials*.

- (i) Absolute Error: δx is called an absolute error in x.
- (ii) Relative Error. $\frac{\delta x}{x}$ is called the relative error.
- (iii) *Percentage Error*: $\left(\frac{\delta x}{x} \times 100\right)$ is called the percentage error.

EXAMPLE 1 Using differentials, find the approximate value of (82) 4 up to three places of decimal.

SOLUTION Let
$$f(x) = x^{1/4}$$
. Then, $f'(x) = \frac{1}{4x^{3/4}}$.

Now, $\{f(x + \delta x) - f(x)\} = f'(x) \cdot \delta x$

$$\Rightarrow \{f(x + \delta x) - f(x)\} = \frac{1}{4x^{3/4}} \cdot \delta x \qquad ... (i)$$

We may write, 82 = (81 + 1).

Putting x = 81 and $\delta x = 1$ in (i), we get

$$f(81+1) - f(81) = \frac{1}{4 \times (81)^{3/4}} \cdot 1$$

$$\Rightarrow f(82) - f(81) = \frac{1}{(4 \times 3^3)} = \frac{1}{108}$$

$$\Rightarrow f(82) = \left\{ f(81) + \frac{1}{108} \right\} = \left\{ (81)^{1/4} + \frac{1}{108} \right\} = 3 + 0.009 = 3.009.$$

EXAMPLE 2 Find the approximate value of the cube root of 127.

SOLUTION Let
$$f(x) = x^{1/3}$$
. Then, $f'(x) = \frac{1}{3x^{2/3}}$.

Now,
$$\{f(x + \delta x) - f(x)\} = f'(x) \cdot \delta x$$

$$\Rightarrow \{f(x+\delta x)-f(x)\} = \frac{1}{3x^{\frac{2}{3}}} \cdot \delta x$$

We may write, 127 = (125 + 2).

Putting x = 125 and $\delta x = 2$ in (i), we get

$$f(125 + 2) - f(125) = \frac{1}{3 \times (125)^{2/3}} \times 2$$

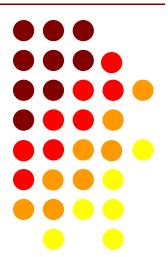
$$\Rightarrow f(127) - f(125) = \frac{2}{75}$$

$$\Rightarrow f(127) = f(125) + \frac{2}{75} = \left\{ (125)^{\frac{1}{3}} + \frac{2}{75} \right\} = \left(5 + \frac{2}{75} \right) = \frac{377}{75}$$

$$\Rightarrow \sqrt[3]{127} = \frac{377}{75} = 5.026.$$

LECTURE NO. -43,44

MAXIMA & MINIMA OF FUNCTIONS OF ONE VARIABLE



Local Maxima and Local Minima >

let f is a great valued function and let c is an integrieg point in the domain of f. then

an hoo such that f(c) > f(n) for all n in (c-h, c+h)

(ii) c is called a point of Jocal minima if there is an 1170 such that f(c) < f(n) for all n in (chich)

* The value f(c) is called the local manimum / local minimum value of f.

* The manimum on minimum value of a function is called an entneme on extremum value of function.

* The points at which f'(n)=0 ane known as stationary points.

Working Rule to find Entereme Values

GROUP OF INSTITUTIONS

I. find f'(x)

II. Solve f(h)=0, Each value of n so obtained is the stationary points of f.

III. find f''(x) at each stationary points x = c.

if f''(c) < 0 then x = c is a point of maximum if f''(c) > 0 then x = c is a point of minimum if f''(c) > 0 then x = c is a point of minimum if f'''(c) = 0 then this test fails.

Example > find local maining on local mining of f(n) = x3-6x2+9x+15 also find Local maximum on Local minimum values. Soll > Given f(x) = x3-6x2+9x+15 - (1) f'(x) = 3x-13x+9 Put f'(n) = 0 food Joed manima and minima $3x^{2}-12x+9=0=)3(x-3)(x-1)=0$ >> N= 3 and N=1 agre stationary points Nom til(x) = Px-13

of N=3, f"(3) = 6x3-12 = 6>0 80 N=3 is a point of Jocal minima and local minimum value is given by putting n=3 in equation (1) $f(3) = (3)^{2} - 6(3)^{2} + 9x3 + 15 = 15$ at x=1 $t_{11}(1) = ex1-15 = -e < 0$ so N=1 is a point of Jocal manima and local manimum value is given by putting n=1 in equation (f(1) = (1) - 6(1) + 9(1) + 15 = 19

EXAMPLE

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function

$$f(x) = -\frac{3}{4}x^4 - 8x^3 - \frac{45}{2}x^2 + 105.$$

SOLUTION

$$f(x) = -\frac{3}{4}x^4 - 8x^3 - \frac{45}{2}x^2 + 105.$$

$$f'(x) = -3x^3 - 24x^2 - 45x = -3x(x^2 + 8x + 15).$$

Now,
$$f'(x) = 0 \Rightarrow -3x(x^2 + 8x + 15) = 0 \Rightarrow -3x(x + 5)(x + 3) = 0$$

 $\Rightarrow x = 0 \text{ or } x = -5 \text{ or } x = -3.$

Thus, x = 0, x = -5 and x = -3 are the candidates for local maxima or minima.

Moreover,
$$f''(x) = (-9x^2 - 48x - 45)$$
.

Case I When x = 0

We have
$$f''(0) = -45 < 0$$
.

So,
$$x = 0$$
 is a point of local maximum.

And, local maximum value at x = 0 is f(0) = 105.

Case II When x = -5

We have
$$f''(-5) = -30 < 0$$
.

So, x = -5 is a point of local maximum.

And, local maximum value at x = -5 is $f(-5) = \frac{295}{4}$.

Case III When x = -3

We have
$$f''(-3) = 18 > 0$$
.

So, x = -3 is a point of local minimum.

Local minimum value at x = -3 is $f(-3) = \frac{231}{4}$.

EXAMPLE Find the local maxima and local minima of the functions:

$$f(x) = (\sin 2x - x)$$
, where $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

EXAMPLE

Find the local maxima and local minima of the functions:

$$f(x) = (\sin 2x - x)$$
, where $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

SOLUTION

$$f(x) = (\sin 2x - x) \Rightarrow f'(x) = (2\cos 2x - 1) \text{ and } f''(x) = -4\sin 2x.$$

$$f'(x) = 0 \implies (2\cos 2x - 1) = 0 \implies \cos 2x = \frac{1}{2}$$

$$\Rightarrow 2x = -\frac{\pi}{3} \text{ or } 2x = \frac{\pi}{3} \Rightarrow x = \frac{-\pi}{6} \text{ or } x = \frac{\pi}{6}$$

Thus, $x = \frac{-\pi}{6}$ and $x = \frac{\pi}{6}$ are the candidates for local maxima

or local minima.

Case I When $x = -(\pi/6)$

We have
$$f''\left(-\frac{\pi}{6}\right) = 4\sin\frac{\pi}{3} = 2\sqrt{3} > 0.$$

So, $x = \frac{-\pi}{6}$ is a point of local minimum.

The local minimum value

$$= f\left(-\frac{\pi}{6}\right) = \left(-\sin\frac{\pi}{3} - \frac{\pi}{6}\right) = -\left(\frac{\sqrt{3}}{2} + \frac{\pi}{6}\right).$$

Case II When $x = \frac{\pi}{6}$

We have
$$f''\left(\frac{\pi}{6}\right) = -4\sin\left(\frac{\pi}{3}\right) = -2\sqrt{3} < 0$$

 \therefore $x = \frac{\pi}{6}$ is a point of local maximum.

And, the local maximum value

$$= f\left(\frac{\pi}{6}\right) = \left(\sin\frac{\pi}{3} - \frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2} - \frac{\pi}{6}\right).$$

EXAMPLE Find the points of local maxima or local minima of the function

$$f(x) = (\sin^4 x + \cos^4 x)$$
 in $0 < x < \frac{\pi}{2}$

EXAMPLE

Find the points of local maxima or local minima of the function

SOLUTION

$$f(x) = \sin^4 x + \cos^4 x$$

$$\Rightarrow f'(x) = 4\sin^3 x \cos x - 4\cos^3 x \sin x$$

$$= -4\sin x \cos x(\cos^2 x - \sin^2 x) = -2\sin 2x \cos 2x = -\sin 4x.$$

 $f(x) = (\sin^4 x + \cos^4 x)$ in $0 < x < \frac{\pi}{2}$

And,
$$f''(x) = -4\cos 4x$$
.

Now,
$$f'(x) = 0 \Rightarrow -\sin 4x = 0 \Rightarrow 4x = \pi$$
, i.e., $x = \frac{\pi}{4}$

 \therefore $x = (\pi/4)$ is a point of local maximum or local minimum.

Now,
$$f''\left(\frac{\pi}{4}\right) = -4\cos \pi = 4 > 0.$$

 \therefore $x = (\pi/4)$ is a point of local minimum.

Local minimum value =
$$f\left(\frac{\pi}{4}\right) = \frac{1}{2}$$
.

- Find the stationary point of the function $y = x^2 2x + 3$ and hence determine the .nature of this point.
- 2. Find the stationary points of the functions (a) $f(x) = 2x^2 + 2x = 0$ (b) $f(x) = x^3 + 2x = 2$

$$3x^2 + 2x - 9$$
, (b) $f(x) = x^3 - 6x^2 + 9x - 2$

3. Find the stationary points of the function $y = 2x^3 - 9x^2 + 12x - 3$ and determine their nature.

Answers

- 1. Local minima at (1,2)
- 2. a) (-1/3, -28/3).b) (3, -2) and (1, 2).
- 3. local maximum point at (1,2) and the local minimum point at (2,1)

THANK YOU

