
Lecture 28 

Introduction of Number 

system and conversion 

among them  



INTRODUCTION 

• A number system defines how a number 

can be represented using distinct digits or 

symbols. 

•  A number can be represented differently in 

different systems. For example, the two 

numbers (2A)16 and (52)8 both refer to the 

same quantity, (42)10, but their 

representations are different.  

• Types of Number Systems: 

1. Non-positional number systems 

2. Positional number systems 



  NON-POSITIONAL NUMBER SYSTEMS 

• Non-Positional Number System does not 

use digits for the representation instead it 

use symbols for the representation.  

• A non-positional number system still uses a 

limited number of symbols in which each 

symbol has a value.  

• The value of each symbol is fixed. 

• Digit value is independent of its position. 

• DIFFICULTY: 

  Difficulty to perform arithmetic with 

such a number system 



Roman numerals are a good example of a non-

positional number system. This number system 

has a set of symbols S = {I, V, X, L, C, D, M}. The 

values of each symbol are shown as: 

To find the value of a number, we need to add 

the value of symbols subject to specific rules . 



 POSITIONAL NUMBER SYSTEMS 

In a positional number system, the position a 

symbol occupies in the number determines 

the value it represents. In this system, a 

number represented as: 

has the value of: 

in which S is the set of symbols, b is the base (or 

radix). 



• In a Positional Number System there are 

only a few symbols that represent different 

values, depending on the position they 

occupy in a number.  

• The value of each digit in such a number is 

determined by three considerations  

• a. The digit itself  

• b. The position of the digit in the number  

• c. The base of the number system(where 

base is defined as the total number of 

digits available in the number system) 



• In computer real numbers are referred to as  

floating point numbers. 

• Floating point numbers are represented as 

<Integer part> <Radix Point> <Fractional 

part> 
34568 . 56735 

34568.56735 



 Number systems  include decimal, binary, 

octal and hexadecimal  

 Each system have four number base     

 

 Number 

System 

Base  Symbo

l  

Binary Base 2 B 

Octal  Base 8 O 

Decimal  Base 10 D 

Hexadecimal  Base 16 H 



Decimal (BASE 10)  

Ten  symbols 0,1,2,3,4,5,6,7,8,9 called 

digits. 

Integer numbers  

Integers are whole  

numbers 

Examples 1, 2, -3, 50, 

675, -560, ….. 

Decimal  

numbers 

Real numbers 

Numbers that has fractions  

like 687. 345, -49.56, … 

DECIMAL NUMBER SYSTEM 



In decimal number system the value of a digit  

is determined by digit × 10 position . 

In integer numbers the position is defined as 0,1,2,3,4,5,…  

starting from the rightmost position and moving one position  

at a time towards left. 

Position 4 3 2 1 0 

10 position 

Position value 

10 4 10 3 10 2 10 1 10 0 

10000 1000 100 10 1 

Digits 7 2 1 3 4 

Digit Value 7×10 4 2×10 3 1×10 2 3×10 1 4×10 0 



Digit Value  

Digit Value 

Integer  

Number 

7×10 4 

70000 

70000 

2×10 3 

2000 

+ 2000 

1×10 2 

100 

+ 100 

3×10 1 4×10 0 

30 4 

+ 30 + 4 

72134 



Decimal Number 

System 

436.85 = 4 × 100 + 3 × 10 + 6 × 1 . 

In floating point numbers the position is defined as  

0,1,2,3,4,5,… starting from the radix point and  

moving one position at a time towards left, and -1,-  

2,-3, … starting from the radix point and moving  

towards right one position at a time. 

Position  

Place Value 

8 × 0 .1 + 5 × 0.01 

Digits 



Why Binary System? 



• Computers store numeric (numbers) as well 
non-  numeric (text, images and others) data 
in binary  representation (binary number 
system). 

• Each state can be represented by a 
number – 1 for “ON” and 0 for “OFF 

• Binary number system is a  two digits (0 
and 1),  also referred to as bits, so it is a 
base 2 system. 

• In this system, the position definition is  same 
as in decimal number system. 

• In binary number system the value of a 
digit is  determined by digit × 2 position . 



Binary Number 

System 

Position 4 3 2 1 0 

2 position 

Position value 

24 

16 

2 3 

8 

2 2 

4 

2 1 

2 

2 0 

1 

Binary Digits 1 1 1 0 1 

Digit Value 1×2 4 1×2 3 1×2 2 0×2 1 1×2 0 

1 × 16 1×8 1×4 0×2 1×1 

16 8 4 0 1 

+ = (29)10 (11101)2 

Value = digit × 
2position 



Binary Number 

System 

Position 

 

Place Value 

Digits 

5 75 

Floating Point Number (101.11)2= (5.75)10 



OCTAL NUMBER SYSTEM 

• Base 8 

• Two Digits: 0, 1,2,3,4,5,6,7 

• Example:  2178 

• Positional Number System  

 

 

 

 

• Bit do is the least significant bit (LSB). 

• Bit dn-1 is the most significant bit (MSB). 

 

17 

8n-1 … 83 82 81 80 

dn-1 … d3 d2 d1 d0 



NUMBER 

CONVERSIONS 



Binary, Octal and Hexadecimal To 

Decimal 
 (1101)2 = 1 x 23+1x22+0x21+1x20 

 = 1 x 8+ 1 x 4 + 0 x 2 + 1 x 1 

 = 8+4+0+1 

 = (13)10 

 (2057)8 = 2 x 83+0x82+5x81+7x80 

 = 2 x 512+ 0 x 64 + 5 x 8 + 7 x 1 

 = 1024+0+40+7 

 = (1071)10 

 (1AF)16 = 1 x 162+Ax161+Fx160 

 = 1 x 256+ 10 x 16 + 15 x 1 

 = 256+160+15 

 = (431)10 



More 

examples 

Ternary (base-3) numbers 

Quaternary (base-4) numbers 

Quinary (base-5) numbers 

Mayan number (base-20) system 

3 (211) = 2 x 32 + 1 x 31 + 1 x 30 

=18 + 3+1 

= (22) 10 

(211)4 = 2 x 42 + 1 x 41 + 1 x 40 

=32 + 4+1 

= (37)10 

(211)5 = 2 x 52 + 1 x 51 + 1 x 50 

=50 + 5+1 

= (56)10 

Senary (base-6 ) numbers 

?? (base-7) numbers  

Tridecimal or Tredecimal  

(base-13) numbers 

Ex. 

(211)6  = (?)10 

(211)7  = (?)10 

(211)13  = (?)10 

(211)20= (?)10 
03/02/13 



From Decimal to Another 

Base 

1. Divide the decimal  
number by the new base. 

2. Record the remainder as  
the right most digit. 

3. Divide the quotient of the  
previous divide by the new  
base. 

4. Record the remainder as  
the next digit. 

5. Repeat step 3& 4 until the  
quotient becomes 0 in  
step 3. 

Example  
Convert (25)10=()2 

(25)10=(11001)2 

Number/   

Base 
Quotient Reminder 

25/2 12 1 

6 12/2 

6/2 

0 

3 0 

3/2 1 1 

1/2 0 1 

03/02/13 



From Decimal to Another 

Base 
Convert  

(42)10=()2 

2 42 Remainder 

21 0 

10 1 

5 0 

2 1 

1 0 

0 1 

Convert 

(952) =() 10 8 

Convert  

(42)10=(101010)2 

8 952 Remainder 

119 0 

14 7 

1 6 

0 1 

Convert  

(952)10=(1670)8 



From Decimal to Another 

Base 
Convert  

(428)10=()16 

16 428 Remainder 

26 

1 

0 

12 C 

10 A 

1 

Convert 

(100) =() 10 5 

Convert 

(428) =(1AC) 10 16 

5 100 Remainder 

20 0 

4 0 

0 4 

Convert  

(100)10=(400)5 



From Decimal to Another 

Base 
Convert  

(100)10=()4 

4 100 Remainder 

Convert 

(1715) =() 10 12 

25 0 2 

6 1 

1 2 

0 1 

Convert  

(100)10=(1210)4 

1 1715 Remainder 

142 11 B 

11 10 A 

0 11 B 

Convert  

(1715)10=(BAB)12 



Converting from a base other than to 

a  base other than 10 

1. Convert the original number to a decimal number. 

2. Convert that decimal number to the new base. 
 

Convert (545)6 to () 4 

 

(545)6 = 5 x 62+4 x 61+ 5 x 60 = 5 x 36 + 4 x 6 + 5 x 1 = 180+24+5= (209)10 

 
4 209 Remainder 

52 1 

13 0 

3 1 

0 3 

545)6 = (209)10=(3101) 4 



Converting form a base other than to 

a  base other than 10 

Convert (101110)2 to () 8 

 

(101110)2 = 1 x 25+0 x 24+1 x 23 +1 x 22+1 x 21+0 x 20 = (46)10 

8 46 Remainder 

5 

0 

6 

5 
(101110)2 = (46)10=(56)8 

Convert (11010011)2 to () 16 

(11010011)2 = 1 x 27+1 x 26+0 x 25 +1 x 24+0 x 23 +0 x 22+1 x 21+1 x 20 = (211)10 

1 211 Remainder  

6 13  3 

0 13 

3 

D 

(11010011)2 = (211)10=D3) 16 



BINARY TO OCTAL 

1.Start from the rightmost position, 

make groups of three binary digits.   

2.Convert each group into octal digit 

Convert (101110)2 to () 8 

101 110 

(5 6)8 



OCTAL TO BINARY   

 

1.Convert each octal to three digit binary. 

   

2.Combine them in a single binary number 

 

 

 

 
(5 6) 8 

(101 110)2 



Convert (562) 8 to ()2 

5 6 2 

101 110 010 

Convert (6751) 8 to ()2 

6 

110 111 101 001 

7 5 1 



Binary to Hexadecimal  

1.Starting from the right most position make 

groups of 4 binary digits  

 2.Convert each group its hexadecimal equivalent 

digits  (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 

Convert (10 1110 0000 1000)2 to () 16 

10 1110 0000 1000 

(2)          (14)          (0)            (8) 

(2E08) 16 



Hexadecimal to Binary 

conversion 

1.Convert each hexadecimal digit 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F into 4  

binary digit. 

 
 

Convert (1EBA2F ) 16 

(1) (B) 

0001 1110 1011 0010 1111 

(2) (E) (F) 



Lecture 29 

Introduction of Boolean 

Algebra, different laws 

and their use in function 

Boolean minimization  



 
 Rules in Boolean Algebra 

• Variable used can have only two values.  

• Binary 1 = HIGH and Binary 0 = LOW. 

• Complement of a variable is represented by an 

overbar (¯)/(’). Thus if B = 0 then  B’= 1 and if 

B = 1 then B’= 0. 

• Logical ORing of the variables is represented 

by a plus (+) sign between them. Ex- A + B 

• Logical ANDing of the two or more variable is 

represented by a dot between them. Ex- A.B.C. 

or ABC. 

Your text here 



Boolean Laws 
 There are Eight types of Boolean Laws. 

1) Commutative law  

Any binary operation which satisfies the following 
expression is referred to as commutative operation. 

 

Commutative law states that changing the sequence 
of the variables does not have any effect on the output 
of a logic circuit. 

 

2) Associative law 

This law states that the order in which the logic 
operations are performed is irrelevant as their effect 
is the same. 

 

 

 
 



4) AND law 

These laws use the AND operation. Therefore 

they are called as AND laws. 

3) Distributive law 

Distributive law states the following condition. 

5) OR law 

These laws use the OR operation. Therefore 

they are called as OR laws. 



 

6) Inversion law 
This law uses the NOT operation. The inversion law 

states that double inversion of a variable results in 

the original variable itself.   

7) Absorption law   
This law enables a reduction in a complicated 

expression to a simpler one by 

absorbing like terms. A(A+B) =A 
A+AB=A 



There are two “de Morgan ́s” rules or 

theorems, 

 

(1) Two separate terms NOR ́ed together 

is the same as the two terms inverted 

(Complement) 

and AND ́ed for eaample: (A+B)’ = A’ . B’ 

 

(2) Two separate terms NAND ́ed 

together is the same as the two terms 

inverted (Complement) 

and OR ́ed for eaample: (A.B)’ = A’ + B’ 

8) De Morgan’s Law   







Examples On Boolean Laws 

Example No1: Using the above laws, simplify 

the following expression:  (A + B)(A + C) 

 (A+B) (A+C) 

= A.A + A.C + B.A + B.C 

= A + A.C + B (A + C) 

= A(1 + C) + B (A + C) 

= A + B (A + C) 

= A + AB + BC 

= A(1+B) + BC 

= A + BC 



EXAMPLE 2: C + (BC)’ 

• C+ (BC)’ 

• = C + (B’ + C’) ; De Morgan’s 

theorem 

• = C + C’ + B’ 

• = 1 + B’ 

• = 1 



EXAMPLE 3: (AB)’(A’ + B)(B’ + B) 

• (AB)’(A’ + B)(B’ + B) 

• = (A’ + B’) (A’ + B) (1) 

• = A’A’ + A’B + A’B’ + B’ B 

• = A’ + A’(B + B’) + 0 

• = A’ + A’(1) 

• = A’ + A’ 

• = A’ 



EXAMPLE 4: (A + C)(AD + AD’) + AC + C 

• (A + C)(AD + AD’) + AC + C 

• = (A + C) A(D + D’) + C(A + 1) 

• = (A + C) A(1) + C 

• = (A + C) . A + C 

• = A.A+ A.C + C 

• = A + AC + C 

• =A(1 + C) + C 

• = A + C 



EXAMPLE 5: A’(A + B) + (B + AA)(A + B’) 

• A’(A + B) + (B + AA)(A + B’) 

• =A’A + A’B + (B + A)(A + B’) 

• =0 + A’B + AB + BB’ + AA + AB’ 

• = B(A’ + A) + 0 + A + AB’ 

• = B(1) + A( 1 + B’) 

• = B + A(1) 

• = A + B 

 



EXAMPLE 6: AB + 
BC(B + C) 
• AB + BC(B + C) 

• = AB + BBC + BCC 

• = AB + BC + BC 

• = AB + BC ;   BC + BC = BC 

• = B(A + C) 

 



EXAMPLE 7: A + B(A + 
C) + AC 
• A + B(A + C) + AC 

• = A + AB + BC + AC 

• = A(1 + B) + BC + AC 

• = A + BC + AC 

• = A(1 + C) + BC 

• = A + BC 



EXAMPLE 8: {(AB)’ + 
C}’B 
• {(AB)’ + C}’B 

• = {(A’ + B’) + C }’ B 

• = {A’’ . B’’ . C’} B 

• = { A . B. C’} B 

• = ABC’  



Lecture 30 

Introduction of Logic gates, 

Universal Gates, Realization 

of basic gates using universal 

gates  



Digital Logic Gates 

• Boolean functions may be practically 
implemented by using electronic gates.  

• Electronic gates require a power supply. 

• Gate INPUTS are driven by voltages having two 
nominal values, e.g. 0V and 5V representing logic 
0 and logic 1 respectively. 

• The OUTPUT of a gate provides two nominal 
values of voltage only, e.g. 0V and 5V 
representing logic 0 and logic 1 respectively. In 
general, there is only one output to a logic gate 
except in some special cases. 

• There is always a time delay between an input 
being applied and the output responding. 

• These gates are the AND, OR, NOT, NAND, 
NOR, EXOR and EXNOR gates.  

 



NOT Gate 
• The NOT gate produces an inverted 

version of the input at its output.  

• It is also known as an inverter.   

• Symbol:  

 

 

 

• Truth Table:  

 

 

 

 

 



AND Gate 
• The AND gate is an electronic circuit that gives 

a high output (1) only if all its inputs are high.   

• A dot (.) is used to show the AND operation i.e. 
A.B.  Or AB 

• Symbol:  

 

 

• Truth Table:  



OR Gate 

• The OR gate is an electronic circuit that gives a 
high output (1) if one or more of its inputs are 
high.   

• A plus (+) is used to show the OR operation. 

• Symbol:  

 

 

• Truth Table:  

 



NAND Gate 

• This is a NOT-AND gate  

• The outputs of all NAND gates are high 

if any of the inputs are low.  

• The small circle represents inversion. 

• Symbol:  

 

 

• Truth Table:  



NOR Gate 

• This is a NOT-OR gate 

• The outputs of all NOR gates are low if any of 
the inputs are high. 

• Symbol:  

 

 

• Truth Table:  



EXOR Gate 
• The 'Exclusive-OR' gate is a circuit which will 

give a high output if either, but not both, of its 
two inputs are high.   

• An encircled plus sign (   ) is used to show the 
ExOR operation. 

• Symbol:  

 

• Truth Table:  



EX-NOR Gate 

• The 'Exclusive-NOR' gate circuit does the 
opposite to the EOR gate.  

• It will give a low output if either, but not both, 
of its two inputs are high.  

• The symbol is an EXOR gate with a small circle 
on the output.  

• Symbol:  

 

• Truth Table:  

 



Universal Gates 

KEC- 
101/201 

 
 

• A universal gate is a gate which can implement any 
Boolean function without need to use any other 
gate type.  

 

• The NAND and NOR gates are universal gates.  

 

• This is advantageous since NAND and NOR gates are 
economical and easier to fabricate and are the basic 
gates used in all IC digital logic families. 

 

 



Logic Gates Using Only NAND Gates 

NAND AS NOT 

GATE 

NAND AS OR 

GATE 

Y=A+
B 

  

  



NAND AS NOR 

GATE 



NAND AS AND 

GATE 



NAND AS XOR 

GATE 



NAND AS XNOR 

GATE 



Logic Gates Using Only NOR Gates 











Lecture 31 

SOP and POS and Canonical 

form representation  



Boolean Function Representation 

• Various way of representing a 
given function 

 1- Sum of Product Form (SOP)                    
 2- Product of Sum Form (POS)  

 3- Standard or Canonical SOP Form          
 4- Standard or Canonical POS Form          
 5- Truth Table Form                                        



Sum of Product Form 
(SOP) 

Standard or Canonical 

SOP Form  

• The Sum of Products is 

abbreviated as SOP.  

• It is the logical expression 

in Boolean algebra where 

all the input terms are 

ANDed (Product) first and 

then ORed (summed) 

together.  

• SOP form: 

F(A,B,C)=A+BC'+A'BC 

• The variables in each 

term are not necessarily 

all the variables of the 

function. 

 

• Standard SOP term must 

contain all the function 

variables either in 

complemented form or in 

uncomplemented form. 

• A product term which 

contain all the function 

variables either in 

complemented form or in 

uncomplemented form is 

called a minterm. 

      

F(A,B,C)=AB’C+A’BC'+A’BC 

      F(A,B,C)=∑m (2,3,5) 

 

 



Product of Sum Form 
(POS) 

Standard or Canonical 

POS Form  

• POS form means that 

the inputs of each term 

are Added together 

using OR function then 

all terms are multiplied 

together using AND 

function.  

• The variables in each 

term are not 

necessarily all the 

variables of the 

function. 

• POS form:  

      

F(A,B,C)=A.(B+C').(A'+B+

C') 

• Standard POS term must 

contain all the function 

variables either in 

complemented form or in 

uncomplemented form. 

• A sum term which contain 

all the function variables 

either in complemented 

form or in 

uncomplemented form is 

called a maxterm. 

• F(A,B,C)=(A+B’+C’) 

(A+B+C) (A’+B+C) 

      F(A,B,C)= ΠM(0,3,4) 

 







Conversion of SOP to Canonical SOP 

F(A,B,C)=A+BC'+A'BC 

=A+BC'+A'BC 
=A(B+B')(C+C')+BC'(A+A')+A'BC 
=ABC+ABC'+AB'C+AB'C'+ 
ABC'+A'BC'+A'BC 

=ABC+ABC'+AB'C+AB'C'+ A'BC'+A'BC 
(A+A=A) 



Conversion of POS to Canonical POS 

 F(A,B,C)=A.(B+C').(A'+B+C') 

=[A+(B.B')+(C.C')].[(B+C')+(A.A')].(A'+B+C') 
=[(A+B+C).(A+B+C').(A+B'+C).(A+B'+C')].[(A+B+C').(A'
+B+C')].(A'+B+C’)  

                                                                                                                                (A.A=A) 

=(A+B+C).(A+B+C').(A+B'+C).(A+B'+
C').(A'+B+C') 



Sum of Product Form 
(SOP) 

Product of Sum Form 
(POS) 

• A way of representing Boolean 

expressions as sum of product 

terms. 

• A way of representing 

Boolean expressions as 

product of sum terms. 

• SOP uses minterms. Minterm 

is product of Boolean variables 

either in normal form or 

complemented form. 

• POS uses maxterms. 

Maxterm is sum of Boolean 

variables either in normal 

form or complemented form. 

• It is sum of minterms. Minterms 

are represented as ‘m’ 

• It is product of maxterms. 

Maxterms are represented as 

‘M’ 

• SOP is formed by considering 

all the minterms, whose output 

is HIGH(1) 

• POS is formed by 

considering all the maxterms, 

whose output is LOW(0) 



• While writing minterms for SOP, 

input with value 1 is considered 

as the variable itself and input 

with value 0 is considered as 

complement of the input. 

     Example : 

         If variable A is Low(0) – A’ 

         A is High(1) – A 

 

• SOP form Examples:  

      F(A,B,C)=A+BC'+A’BC 

      F(A,B,C)=AB’C+A’BC'+A’BC 

      F(A,B,C)=∑ m  (2,3,5) 

• While writing maxterms for 

POS, input with value 1 is 

considered as the complement 

and input with value 0 is 

considered as the variable 

itself. 

      Example : 

          If variable A is Low(0) - A  

          A is High(1) - A’  

 

• POS form Examples:  

      F(A,B,C)=A.(B+C').(A'+B+C’) 

      

F(A,B,C)=(A+B’+C’)(A+B+C)(A’+B

+C) 

      F(A,B,C)= ΠM(0,3,4) 



Example 1 – Express the Boolean function  F = 
A + B’C as standard sum of minterms. 

 
A = A(B + B’) = AB + AB’  
A = AB(C + C’) + AB'(C + C’) = ABC + ABC’+ AB’C + 
AB’C’  
B’C = B’C(A + A’) = AB’C + A’B’C  
F = A + B’C = ABC + ABC’ + AB’C + AB’C’ + AB’C + 
A’B’C  
F = A’B’C + AB’C’ + AB’C + ABC’ + ABC  
= m1 + m4 + m5 + m6 + m7  
=∑m(1,4,5,6,7) 
 



Example 2 – Express the Boolean function F = 
(A+B’)(B+C) as a product of max-terms 

• F = (A+B’)(B+C) 

• I term: (A+B’)= (A+B’+CC’) 

            = (A+B’+C) (A+B’+C’) 

• II term: (B+C)= (AA’+B+C) 

                            = (A+B+C) (A’+B+C) 

• Combining both: 

• F= (A+B’+C) (A+B’+C’) (A+B+C) 
(A’+B+C) 

      = M2 * M3 * M0 * M4 

      = ΠM(0,2,3,4) 



 
Example 3 – Express the Boolean function F = xy + 
x’z as a product of maxterms. 
 • F = xy + x’z  

       = (xy + x’)(xy + z)  
   = (x + x’)(y + x’)(x + z)(y + z)  
   = (x’ + y)(x + z)(y + z)  

• x’ + y = x’ + y + zz’  
= (x’+ y + z)(x’ + y + z’) x + z  

•  x + z + yy’  
= (x + y + z)(x + y’ + z) y + z  

•  y + z + xx’  
= (x + y + z)(x’ + y + z)  

• F = (x + y + z)(x + y’ + z)(x’ + y + z)(x’ + y + z’)  
= M0*M2*M4*M5  

     = πM(0,2,4,5) 



 
Example 4–Convert F(A, B, C) = ∑m(1,4,5,6,7) to POS FORM 
 

• Missing terms of minterms = terms of maxterms 

• Missing terms of maxterms = terms of minterms 

• F(A, B, C) = ∑m(1,4,5,6,7) =πM(0,2,3) 

 

Example 5– Convert Boolean expression in 
standard form F=y’+xz’+xyz 
 

• F=y’+xz’+xyz 

• F = (x+x’)y'(z+z’)+x(y+y’)z’ +xyz  

• F = xy’z+ xy’z’+x’y’z+x’y’z’+ xyz’+xy’z’+xyz  

• F = m5,    m4,     m1,   m0,    m6,   m4,   m7 

• F= ∑m (0,1,4,5,6,7) 

 



Example : Generate 
truth table for F= xy + 
x’z. 

INPUTS OUTPUT 

X Y Z F 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 

0 Maxterms 

1 Minterms 

Truth Table Form 
Use of truth table to show all the possible combinations 
of input conditions that will produces an output 1 in case 
of SOP expression and 0 in case of POS. 

where 



Lecture 32 

Introduction of K Map: 2&3 

Variable  



 

KARNAUGH MAP (K-Map) 
  
 



1.Select K-map according to the number of variables. 

2.Identify minterm or maxterms as given in problem. 

3.For SOP put 1’s in blocks of K-map respective to the minterms. 

4.For POS put 0’s in blocks of K-map respective to the maxterms. 

5.Make rectangular groups containing total terms in power of two like 

2,4,8 ..(except 1) and try to cover as many elements as you can in one 

group. 

6.From the groups made in step 5 find the product terms and sum them 

up for SOP form. 

 

Steps to solve expression using 
K-map 



 

 Two Variable K-Map 
 
 



• we have the equation for 
two inputs X and Y 

• Draw the k-map for 
function F with marking 1 
for X'Y and XY position 

• Now combine two 1's as 
shown in figure to form 
the single term 

• X and X' get canceled and 
only Y remains. 

              

                                  So F = Y 

 

• Draw the k-map for function F 

• mark 1 for X'Y, XY and XY position 

 

 

 

 

 

 

 

                        So, F = X + Y 

 



      

B 

A 

0 1 

0 1 1 

1 1 

      

B 

A 

0 1 

0 1 1 

1 1 1 



 

Three Variable K-Map 
 
 

• The number of cells in 3 variable K-map is eight, since the 
number of variables is three.  

• The following figure shows 3 variable K-Map. 

 

 

 

 

 

 

• There is only one possibility of grouping 8 adjacent min terms. 

• The possible combinations of grouping 4 adjacent min terms 
are {(m0, m1, m3, m2), (m4, m5, m7, m6), (m0, m1, m4, m5), (m1, 
m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, m6, m4)}. 

• The possible combinations of grouping 2 adjacent min terms 
are {(m0, m1), (m1, m3), (m3, m2), (m2, m0), (m4, m5), (m5, m7), 
(m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, m7) and (m2, m6)}. 

 

 



Representation using 
minterms  

(SOP form): 

Representation using 
maxterms 

 (POS form): 





K-MAP CAN BE TRICKY 



 
Examples of K-Map 
 
 







Lecture 34 

K Map: 5 & 6 Variable K 

map and Problems on 

Kmap 



 
5 Variable K-Map 
 
 
 

https://www.electricaltechnology.org/wp-content/uploads/2018/05/5-variables-K-map.png




 

 Example -1 
 
 

F (A,B,C,D,E)  =  ∑  ( m0, m2, m5, m7, m8, m10, m16, 

m21, m23, m24, m27, m31 ) 



 

 Example -2 
 
 



6 Variable K-Map 





• Visualize these k-maps 

on top  

     of each other.  

 

• In this example, there 

are  

      5 groups of 4 min-

terms.  

 

• Notice the min-terms 

in the  

      diagonal K-maps, 

they make a         

      separate group 

because these 

      K-maps are not 

adjacent 



 

 Example -1 
 
 

 
 

F  =  ∑ ( m0, m2, m8, m9, m10, m12, m13, m16, m18, m24, 
m25, m26, m29, m31, m32, m34, m35, m39, m40, m42, m43, 

m47, m48, m50, m56, m58, m61, m63 ) 
 

 









F=WX’Y’ + WY + W’YZ’ 

=WX’Y’(Z+Z’)+WY(X+X’)+W’YZ’(X+X’) 

= WX’Y’Z+ WX’Y’Z’+ WXY+ WX’Y+ W’XYZ’ +W’X’YZ’ 

= WX’Y’Z+ WX’Y’Z’+ WXY(Z+Z’) + WX’Y(Z+Z’) + 

W’XYZ’ +W’X’YZ’ 

= WX’Y’Z+ WX’Y’Z’+ WXYZ+ WXYZ’+ WX’YZ+ WX’YZ’+ 

W’XYZ’ +W’X’YZ’ 



Example 8: 



Example-9 
 



 

 Example -10 
 
 



 

 Example -11 
 
 


