
Lecture 28

Introduction of Number

system and conversion

among them

INTRODUCTION

• A number system defines how a number

can be represented using distinct digits or

symbols.

• A number can be represented differently in

different systems. For example, the two

numbers (2A)16 and (52)8 both refer to the

same quantity, (42)10, but their

representations are different.

• Types of Number Systems:

1. Non-positional number systems

2. Positional number systems

 NON-POSITIONAL NUMBER SYSTEMS

• Non-Positional Number System does not

use digits for the representation instead it

use symbols for the representation.

• A non-positional number system still uses a

limited number of symbols in which each

symbol has a value.

• The value of each symbol is fixed.

• Digit value is independent of its position.

• DIFFICULTY:

 Difficulty to perform arithmetic with

such a number system

Roman numerals are a good example of a non-

positional number system. This number system

has a set of symbols S = {I, V, X, L, C, D, M}. The

values of each symbol are shown as:

To find the value of a number, we need to add

the value of symbols subject to specific rules .

 POSITIONAL NUMBER SYSTEMS

In a positional number system, the position a

symbol occupies in the number determines

the value it represents. In this system, a

number represented as:

has the value of:

in which S is the set of symbols, b is the base (or

radix).

• In a Positional Number System there are

only a few symbols that represent different

values, depending on the position they

occupy in a number.

• The value of each digit in such a number is

determined by three considerations

• a. The digit itself

• b. The position of the digit in the number

• c. The base of the number system(where

base is defined as the total number of

digits available in the number system)

• In computer real numbers are referred to as

floating point numbers.

• Floating point numbers are represented as

<Integer part> <Radix Point> <Fractional

part>
34568 . 56735

34568.56735

 Number systems include decimal, binary,

octal and hexadecimal

 Each system have four number base

 Number

System

Base Symbo

l

Binary Base 2 B

Octal Base 8 O

Decimal Base 10 D

Hexadecimal Base 16 H

Decimal (BASE 10)

Ten symbols 0,1,2,3,4,5,6,7,8,9 called

digits.

Integer numbers

Integers are whole

numbers

Examples 1, 2, -3, 50,

675, -560, …..

Decimal

numbers

Real numbers

Numbers that has fractions

like 687. 345, -49.56, …

DECIMAL NUMBER SYSTEM

In decimal number system the value of a digit

is determined by digit × 10 position .

In integer numbers the position is defined as 0,1,2,3,4,5,…

starting from the rightmost position and moving one position

at a time towards left.

Position 4 3 2 1 0

10 position

Position value

10 4 10 3 10 2 10 1 10 0

10000 1000 100 10 1

Digits 7 2 1 3 4

Digit Value 7×10 4 2×10 3 1×10 2 3×10 1 4×10 0

Digit Value

Digit Value

Integer

Number

7×10 4

70000

70000

2×10 3

2000

+ 2000

1×10 2

100

+ 100

3×10 1 4×10 0

30 4

+ 30 + 4

72134

Decimal Number

System

436.85 = 4 × 100 + 3 × 10 + 6 × 1 .

In floating point numbers the position is defined as

0,1,2,3,4,5,… starting from the radix point and

moving one position at a time towards left, and -1,-

2,-3, … starting from the radix point and moving

towards right one position at a time.

Position

Place Value

8 × 0 .1 + 5 × 0.01

Digits

Why Binary System?

• Computers store numeric (numbers) as well
non- numeric (text, images and others) data
in binary representation (binary number
system).

• Each state can be represented by a
number – 1 for “ON” and 0 for “OFF

• Binary number system is a two digits (0
and 1), also referred to as bits, so it is a
base 2 system.

• In this system, the position definition is same
as in decimal number system.

• In binary number system the value of a
digit is determined by digit × 2 position .

Binary Number

System

Position 4 3 2 1 0

2 position

Position value

24

16

2 3

8

2 2

4

2 1

2

2 0

1

Binary Digits 1 1 1 0 1

Digit Value 1×2 4 1×2 3 1×2 2 0×2 1 1×2 0

1 × 16 1×8 1×4 0×2 1×1

16 8 4 0 1

+ = (29)10 (11101)2

Value = digit ×
2position

Binary Number

System

Position

Place Value

Digits

5 75

Floating Point Number (101.11)2= (5.75)10

OCTAL NUMBER SYSTEM

• Base 8

• Two Digits: 0, 1,2,3,4,5,6,7

• Example: 2178

• Positional Number System

• Bit do is the least significant bit (LSB).

• Bit dn-1 is the most significant bit (MSB).

17

8n-1 … 83 82 81 80

dn-1 … d3 d2 d1 d0

NUMBER

CONVERSIONS

Binary, Octal and Hexadecimal To

Decimal
 (1101)2 = 1 x 23+1x22+0x21+1x20

 = 1 x 8+ 1 x 4 + 0 x 2 + 1 x 1

 = 8+4+0+1

 = (13)10

 (2057)8 = 2 x 83+0x82+5x81+7x80

 = 2 x 512+ 0 x 64 + 5 x 8 + 7 x 1

 = 1024+0+40+7

 = (1071)10

 (1AF)16 = 1 x 162+Ax161+Fx160

 = 1 x 256+ 10 x 16 + 15 x 1

 = 256+160+15

 = (431)10

More

examples

Ternary (base-3) numbers

Quaternary (base-4) numbers

Quinary (base-5) numbers

Mayan number (base-20) system

3 (211) = 2 x 32 + 1 x 31 + 1 x 30

=18 + 3+1

= (22) 10

(211)4 = 2 x 42 + 1 x 41 + 1 x 40

=32 + 4+1

= (37)10

(211)5 = 2 x 52 + 1 x 51 + 1 x 50

=50 + 5+1

= (56)10

Senary (base-6) numbers

?? (base-7) numbers

Tridecimal or Tredecimal

(base-13) numbers

Ex.

(211)6 = (?)10

(211)7 = (?)10

(211)13 = (?)10

(211)20= (?)10
03/02/13

From Decimal to Another

Base

1. Divide the decimal
number by the new base.

2. Record the remainder as
the right most digit.

3. Divide the quotient of the
previous divide by the new
base.

4. Record the remainder as
the next digit.

5. Repeat step 3& 4 until the
quotient becomes 0 in
step 3.

Example
Convert (25)10=()2

(25)10=(11001)2

Number/

Base
Quotient Reminder

25/2 12 1

6 12/2

6/2

0

3 0

3/2 1 1

1/2 0 1

03/02/13

From Decimal to Another

Base
Convert

(42)10=()2

2 42 Remainder

21 0

10 1

5 0

2 1

1 0

0 1

Convert

(952) =() 10 8

Convert

(42)10=(101010)2

8 952 Remainder

119 0

14 7

1 6

0 1

Convert

(952)10=(1670)8

From Decimal to Another

Base
Convert

(428)10=()16

16 428 Remainder

26

1

0

12 C

10 A

1

Convert

(100) =() 10 5

Convert

(428) =(1AC) 10 16

5 100 Remainder

20 0

4 0

0 4

Convert

(100)10=(400)5

From Decimal to Another

Base
Convert

(100)10=()4

4 100 Remainder

Convert

(1715) =() 10 12

25 0 2

6 1

1 2

0 1

Convert

(100)10=(1210)4

1 1715 Remainder

142 11 B

11 10 A

0 11 B

Convert

(1715)10=(BAB)12

Converting from a base other than to

a base other than 10

1. Convert the original number to a decimal number.

2. Convert that decimal number to the new base.

Convert (545)6 to () 4

(545)6 = 5 x 62+4 x 61+ 5 x 60 = 5 x 36 + 4 x 6 + 5 x 1 = 180+24+5= (209)10

4 209 Remainder

52 1

13 0

3 1

0 3

545)6 = (209)10=(3101) 4

Converting form a base other than to

a base other than 10

Convert (101110)2 to () 8

(101110)2 = 1 x 25+0 x 24+1 x 23 +1 x 22+1 x 21+0 x 20 = (46)10

8 46 Remainder

5

0

6

5
(101110)2 = (46)10=(56)8

Convert (11010011)2 to () 16

(11010011)2 = 1 x 27+1 x 26+0 x 25 +1 x 24+0 x 23 +0 x 22+1 x 21+1 x 20 = (211)10

1 211 Remainder

6 13 3

0 13

3

D

(11010011)2 = (211)10=D3) 16

BINARY TO OCTAL

1.Start from the rightmost position,

make groups of three binary digits.

2.Convert each group into octal digit

Convert (101110)2 to () 8

101 110

(5 6)8

OCTAL TO BINARY

1.Convert each octal to three digit binary.

2.Combine them in a single binary number

(5 6) 8

(101 110)2

Convert (562) 8 to ()2

5 6 2

101 110 010

Convert (6751) 8 to ()2

6

110 111 101 001

7 5 1

Binary to Hexadecimal

1.Starting from the right most position make

groups of 4 binary digits

 2.Convert each group its hexadecimal equivalent

digits (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Convert (10 1110 0000 1000)2 to () 16

10 1110 0000 1000

(2) (14) (0) (8)

(2E08) 16

Hexadecimal to Binary

conversion

1.Convert each hexadecimal digit 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F into 4

binary digit.

Convert (1EBA2F) 16

(1) (B)

0001 1110 1011 0010 1111

(2) (E) (F)

Lecture 29

Introduction of Boolean

Algebra, different laws

and their use in function

Boolean minimization

 Rules in Boolean Algebra

• Variable used can have only two values.

• Binary 1 = HIGH and Binary 0 = LOW.

• Complement of a variable is represented by an

overbar (¯)/(’). Thus if B = 0 then B’= 1 and if

B = 1 then B’= 0.

• Logical ORing of the variables is represented

by a plus (+) sign between them. Ex- A + B

• Logical ANDing of the two or more variable is

represented by a dot between them. Ex- A.B.C.

or ABC.

Your text here

Boolean Laws
 There are Eight types of Boolean Laws.

1) Commutative law

Any binary operation which satisfies the following
expression is referred to as commutative operation.

Commutative law states that changing the sequence
of the variables does not have any effect on the output
of a logic circuit.

2) Associative law

This law states that the order in which the logic
operations are performed is irrelevant as their effect
is the same.

4) AND law

These laws use the AND operation. Therefore

they are called as AND laws.

3) Distributive law

Distributive law states the following condition.

5) OR law

These laws use the OR operation. Therefore

they are called as OR laws.

6) Inversion law
This law uses the NOT operation. The inversion law

states that double inversion of a variable results in

the original variable itself.

7) Absorption law
This law enables a reduction in a complicated

expression to a simpler one by

absorbing like terms. A(A+B) =A
A+AB=A

There are two “de Morgan ́s” rules or

theorems,

(1) Two separate terms NOR ́ed together

is the same as the two terms inverted

(Complement)

and AND ́ed for eaample: (A+B)’ = A’ . B’

(2) Two separate terms NAND ́ed

together is the same as the two terms

inverted (Complement)

and OR ́ed for eaample: (A.B)’ = A’ + B’

8) De Morgan’s Law

Examples On Boolean Laws

Example No1: Using the above laws, simplify

the following expression: (A + B)(A + C)

 (A+B) (A+C)

= A.A + A.C + B.A + B.C

= A + A.C + B (A + C)

= A(1 + C) + B (A + C)

= A + B (A + C)

= A + AB + BC

= A(1+B) + BC

= A + BC

EXAMPLE 2: C + (BC)’

• C+ (BC)’

• = C + (B’ + C’) ; De Morgan’s

theorem

• = C + C’ + B’

• = 1 + B’

• = 1

EXAMPLE 3: (AB)’(A’ + B)(B’ + B)

• (AB)’(A’ + B)(B’ + B)

• = (A’ + B’) (A’ + B) (1)

• = A’A’ + A’B + A’B’ + B’ B

• = A’ + A’(B + B’) + 0

• = A’ + A’(1)

• = A’ + A’

• = A’

EXAMPLE 4: (A + C)(AD + AD’) + AC + C

• (A + C)(AD + AD’) + AC + C

• = (A + C) A(D + D’) + C(A + 1)

• = (A + C) A(1) + C

• = (A + C) . A + C

• = A.A+ A.C + C

• = A + AC + C

• =A(1 + C) + C

• = A + C

EXAMPLE 5: A’(A + B) + (B + AA)(A + B’)

• A’(A + B) + (B + AA)(A + B’)

• =A’A + A’B + (B + A)(A + B’)

• =0 + A’B + AB + BB’ + AA + AB’

• = B(A’ + A) + 0 + A + AB’

• = B(1) + A(1 + B’)

• = B + A(1)

• = A + B

EXAMPLE 6: AB +
BC(B + C)
• AB + BC(B + C)

• = AB + BBC + BCC

• = AB + BC + BC

• = AB + BC ; BC + BC = BC

• = B(A + C)

EXAMPLE 7: A + B(A +
C) + AC
• A + B(A + C) + AC

• = A + AB + BC + AC

• = A(1 + B) + BC + AC

• = A + BC + AC

• = A(1 + C) + BC

• = A + BC

EXAMPLE 8: {(AB)’ +
C}’B
• {(AB)’ + C}’B

• = {(A’ + B’) + C }’ B

• = {A’’ . B’’ . C’} B

• = { A . B. C’} B

• = ABC’

Lecture 30

Introduction of Logic gates,

Universal Gates, Realization

of basic gates using universal

gates

Digital Logic Gates

• Boolean functions may be practically
implemented by using electronic gates.

• Electronic gates require a power supply.

• Gate INPUTS are driven by voltages having two
nominal values, e.g. 0V and 5V representing logic
0 and logic 1 respectively.

• The OUTPUT of a gate provides two nominal
values of voltage only, e.g. 0V and 5V
representing logic 0 and logic 1 respectively. In
general, there is only one output to a logic gate
except in some special cases.

• There is always a time delay between an input
being applied and the output responding.

• These gates are the AND, OR, NOT, NAND,
NOR, EXOR and EXNOR gates.

NOT Gate
• The NOT gate produces an inverted

version of the input at its output.

• It is also known as an inverter.

• Symbol:

• Truth Table:

AND Gate
• The AND gate is an electronic circuit that gives

a high output (1) only if all its inputs are high.

• A dot (.) is used to show the AND operation i.e.
A.B. Or AB

• Symbol:

• Truth Table:

OR Gate

• The OR gate is an electronic circuit that gives a
high output (1) if one or more of its inputs are
high.

• A plus (+) is used to show the OR operation.

• Symbol:

• Truth Table:

NAND Gate

• This is a NOT-AND gate

• The outputs of all NAND gates are high

if any of the inputs are low.

• The small circle represents inversion.

• Symbol:

• Truth Table:

NOR Gate

• This is a NOT-OR gate

• The outputs of all NOR gates are low if any of
the inputs are high.

• Symbol:

• Truth Table:

EXOR Gate
• The 'Exclusive-OR' gate is a circuit which will

give a high output if either, but not both, of its
two inputs are high.

• An encircled plus sign () is used to show the
ExOR operation.

• Symbol:

• Truth Table:

EX-NOR Gate

• The 'Exclusive-NOR' gate circuit does the
opposite to the EOR gate.

• It will give a low output if either, but not both,
of its two inputs are high.

• The symbol is an EXOR gate with a small circle
on the output.

• Symbol:

• Truth Table:

Universal Gates

KEC-
101/201

• A universal gate is a gate which can implement any
Boolean function without need to use any other
gate type.

• The NAND and NOR gates are universal gates.

• This is advantageous since NAND and NOR gates are
economical and easier to fabricate and are the basic
gates used in all IC digital logic families.

Logic Gates Using Only NAND Gates

NAND AS NOT

GATE

NAND AS OR

GATE

Y=A+
B

NAND AS NOR

GATE

NAND AS AND

GATE

NAND AS XOR

GATE

NAND AS XNOR

GATE

Logic Gates Using Only NOR Gates

Lecture 31

SOP and POS and Canonical

form representation

Boolean Function Representation

• Various way of representing a
given function

 1- Sum of Product Form (SOP)
 2- Product of Sum Form (POS)

 3- Standard or Canonical SOP Form
 4- Standard or Canonical POS Form
 5- Truth Table Form

Sum of Product Form
(SOP)

Standard or Canonical

SOP Form

• The Sum of Products is

abbreviated as SOP.

• It is the logical expression

in Boolean algebra where

all the input terms are

ANDed (Product) first and

then ORed (summed)

together.

• SOP form:

F(A,B,C)=A+BC'+A'BC

• The variables in each

term are not necessarily

all the variables of the

function.

• Standard SOP term must

contain all the function

variables either in

complemented form or in

uncomplemented form.

• A product term which

contain all the function

variables either in

complemented form or in

uncomplemented form is

called a minterm.

F(A,B,C)=AB’C+A’BC'+A’BC

 F(A,B,C)=∑m (2,3,5)

Product of Sum Form
(POS)

Standard or Canonical

POS Form

• POS form means that

the inputs of each term

are Added together

using OR function then

all terms are multiplied

together using AND

function.

• The variables in each

term are not

necessarily all the

variables of the

function.

• POS form:

F(A,B,C)=A.(B+C').(A'+B+

C')

• Standard POS term must

contain all the function

variables either in

complemented form or in

uncomplemented form.

• A sum term which contain

all the function variables

either in complemented

form or in

uncomplemented form is

called a maxterm.

• F(A,B,C)=(A+B’+C’)

(A+B+C) (A’+B+C)

 F(A,B,C)= ΠM(0,3,4)

Conversion of SOP to Canonical SOP

F(A,B,C)=A+BC'+A'BC

=A+BC'+A'BC
=A(B+B')(C+C')+BC'(A+A')+A'BC
=ABC+ABC'+AB'C+AB'C'+
ABC'+A'BC'+A'BC

=ABC+ABC'+AB'C+AB'C'+ A'BC'+A'BC
(A+A=A)

Conversion of POS to Canonical POS

 F(A,B,C)=A.(B+C').(A'+B+C')

=[A+(B.B')+(C.C')].[(B+C')+(A.A')].(A'+B+C')
=[(A+B+C).(A+B+C').(A+B'+C).(A+B'+C')].[(A+B+C').(A'
+B+C')].(A'+B+C’)

 (A.A=A)

=(A+B+C).(A+B+C').(A+B'+C).(A+B'+
C').(A'+B+C')

Sum of Product Form
(SOP)

Product of Sum Form
(POS)

• A way of representing Boolean

expressions as sum of product

terms.

• A way of representing

Boolean expressions as

product of sum terms.

• SOP uses minterms. Minterm

is product of Boolean variables

either in normal form or

complemented form.

• POS uses maxterms.

Maxterm is sum of Boolean

variables either in normal

form or complemented form.

• It is sum of minterms. Minterms

are represented as ‘m’

• It is product of maxterms.

Maxterms are represented as

‘M’

• SOP is formed by considering

all the minterms, whose output

is HIGH(1)

• POS is formed by

considering all the maxterms,

whose output is LOW(0)

• While writing minterms for SOP,

input with value 1 is considered

as the variable itself and input

with value 0 is considered as

complement of the input.

 Example :

 If variable A is Low(0) – A’

 A is High(1) – A

• SOP form Examples:

 F(A,B,C)=A+BC'+A’BC

 F(A,B,C)=AB’C+A’BC'+A’BC

 F(A,B,C)=∑ m (2,3,5)

• While writing maxterms for

POS, input with value 1 is

considered as the complement

and input with value 0 is

considered as the variable

itself.

 Example :

 If variable A is Low(0) - A

 A is High(1) - A’

• POS form Examples:

 F(A,B,C)=A.(B+C').(A'+B+C’)

F(A,B,C)=(A+B’+C’)(A+B+C)(A’+B

+C)

 F(A,B,C)= ΠM(0,3,4)

Example 1 – Express the Boolean function F =
A + B’C as standard sum of minterms.

A = A(B + B’) = AB + AB’
A = AB(C + C’) + AB'(C + C’) = ABC + ABC’+ AB’C +
AB’C’
B’C = B’C(A + A’) = AB’C + A’B’C
F = A + B’C = ABC + ABC’ + AB’C + AB’C’ + AB’C +
A’B’C
F = A’B’C + AB’C’ + AB’C + ABC’ + ABC
= m1 + m4 + m5 + m6 + m7
=∑m(1,4,5,6,7)

Example 2 – Express the Boolean function F =
(A+B’)(B+C) as a product of max-terms

• F = (A+B’)(B+C)

• I term: (A+B’)= (A+B’+CC’)

 = (A+B’+C) (A+B’+C’)

• II term: (B+C)= (AA’+B+C)

 = (A+B+C) (A’+B+C)

• Combining both:

• F= (A+B’+C) (A+B’+C’) (A+B+C)
(A’+B+C)

 = M2 * M3 * M0 * M4

 = ΠM(0,2,3,4)

Example 3 – Express the Boolean function F = xy +
x’z as a product of maxterms.
 • F = xy + x’z

 = (xy + x’)(xy + z)
 = (x + x’)(y + x’)(x + z)(y + z)
 = (x’ + y)(x + z)(y + z)

• x’ + y = x’ + y + zz’
= (x’+ y + z)(x’ + y + z’) x + z

• x + z + yy’
= (x + y + z)(x + y’ + z) y + z

• y + z + xx’
= (x + y + z)(x’ + y + z)

• F = (x + y + z)(x + y’ + z)(x’ + y + z)(x’ + y + z’)
= M0*M2*M4*M5

 = πM(0,2,4,5)

Example 4–Convert F(A, B, C) = ∑m(1,4,5,6,7) to POS FORM

• Missing terms of minterms = terms of maxterms

• Missing terms of maxterms = terms of minterms

• F(A, B, C) = ∑m(1,4,5,6,7) =πM(0,2,3)

Example 5– Convert Boolean expression in
standard form F=y’+xz’+xyz

• F=y’+xz’+xyz

• F = (x+x’)y'(z+z’)+x(y+y’)z’ +xyz

• F = xy’z+ xy’z’+x’y’z+x’y’z’+ xyz’+xy’z’+xyz

• F = m5, m4, m1, m0, m6, m4, m7

• F= ∑m (0,1,4,5,6,7)

Example : Generate
truth table for F= xy +
x’z.

INPUTS OUTPUT

X Y Z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

0 Maxterms

1 Minterms

Truth Table Form
Use of truth table to show all the possible combinations
of input conditions that will produces an output 1 in case
of SOP expression and 0 in case of POS.

where

Lecture 32

Introduction of K Map: 2&3

Variable

KARNAUGH MAP (K-Map)

1.Select K-map according to the number of variables.

2.Identify minterm or maxterms as given in problem.

3.For SOP put 1’s in blocks of K-map respective to the minterms.

4.For POS put 0’s in blocks of K-map respective to the maxterms.

5.Make rectangular groups containing total terms in power of two like

2,4,8 ..(except 1) and try to cover as many elements as you can in one

group.

6.From the groups made in step 5 find the product terms and sum them

up for SOP form.

Steps to solve expression using
K-map

 Two Variable K-Map

• we have the equation for
two inputs X and Y

• Draw the k-map for
function F with marking 1
for X'Y and XY position

• Now combine two 1's as
shown in figure to form
the single term

• X and X' get canceled and
only Y remains.

 So F = Y

• Draw the k-map for function F

• mark 1 for X'Y, XY and XY position

 So, F = X + Y

B

A

0 1

0 1 1

1 1

B

A

0 1

0 1 1

1 1 1

Three Variable K-Map

• The number of cells in 3 variable K-map is eight, since the
number of variables is three.

• The following figure shows 3 variable K-Map.

• There is only one possibility of grouping 8 adjacent min terms.

• The possible combinations of grouping 4 adjacent min terms
are {(m0, m1, m3, m2), (m4, m5, m7, m6), (m0, m1, m4, m5), (m1,
m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, m6, m4)}.

• The possible combinations of grouping 2 adjacent min terms
are {(m0, m1), (m1, m3), (m3, m2), (m2, m0), (m4, m5), (m5, m7),
(m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, m7) and (m2, m6)}.

Representation using
minterms

(SOP form):

Representation using
maxterms

 (POS form):

K-MAP CAN BE TRICKY

Examples of K-Map

Lecture 34

K Map: 5 & 6 Variable K

map and Problems on

Kmap

5 Variable K-Map

https://www.electricaltechnology.org/wp-content/uploads/2018/05/5-variables-K-map.png

 Example -1

F (A,B,C,D,E) = ∑ (m0, m2, m5, m7, m8, m10, m16,

m21, m23, m24, m27, m31)

 Example -2

6 Variable K-Map

• Visualize these k-maps

on top

 of each other.

• In this example, there

are

 5 groups of 4 min-

terms.

• Notice the min-terms

in the

 diagonal K-maps,

they make a

 separate group

because these

 K-maps are not

adjacent

 Example -1

F = ∑ (m0, m2, m8, m9, m10, m12, m13, m16, m18, m24,
m25, m26, m29, m31, m32, m34, m35, m39, m40, m42, m43,

m47, m48, m50, m56, m58, m61, m63)

F=WX’Y’ + WY + W’YZ’

=WX’Y’(Z+Z’)+WY(X+X’)+W’YZ’(X+X’)

= WX’Y’Z+ WX’Y’Z’+ WXY+ WX’Y+ W’XYZ’ +W’X’YZ’

= WX’Y’Z+ WX’Y’Z’+ WXY(Z+Z’) + WX’Y(Z+Z’) +

W’XYZ’ +W’X’YZ’

= WX’Y’Z+ WX’Y’Z’+ WXYZ+ WXYZ’+ WX’YZ+ WX’YZ’+

W’XYZ’ +W’X’YZ’

Example 8:

Example-9

 Example -10

 Example -11

