Fundamental of Electrical Engineering UNIT-1
D.C Circuits

miet

Course Structure(T+P)

Theory(T)

Name of the Course: Fundamental of Electrical Engineering Course Code : BEE 101(First Sem.) / BEE 201 (Second Sem.)

Practical(P)

Name of the Course: Basic Electrical Engineering Lab
Course Code : BEE 151(First Sem.) / BEE 251(Second Sem.)

Course Syllabus

Unit 1

D.C Circuits: Electrical circuit elements (R, L and C), Concept of active and passive elements, voltage and current sources, concept of linearity, unilateral and bilateral elements. Kirchhoff"s laws, Mesh and nodal methods of analysis.

Unit 2

Steady- State Analysis of Single Phase AC Circuits: Representation of Sinusoidal waveforms - Average and effective values, Form and peak factors. Analysis of single phase AC Circuits consisting R-L-C combination (Series and Parallel) Apparent, active \& reactive power, Power factor. Concept of Resonance in series \& parallel circuits, bandwidth and quality factor.
Three phase balanced circuits, voltage and current relations in star and de $8:$ connections.

Course Syllabus

Unit 3

Transformers: Magnetic circuits, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency.
Unit 4
Electrical machines: DC machines: Principle \& Construction, Types, EMF equation of generator and torque equation of motor, applications of DC motors (simple numerical problems)
Three Phase Induction Motor: Principle \& Construction, Types, Slip-torque characteristics, Applications (Numerical problems related to slip only)
Single Phase Induction motor: Principle of operation and introduction to methods of starting, applications. Three Phase Synchronous Machines: Principle operation of alternator and synchronous motor and their applications

Course Syllabus

Unit 5

Electrical Installations: Introduction of Switch Fuse Unit (SFU), MCB, ELCB, MCCB, ACB. Types of Wires, Cables and Bus-bars. Fundamentals of earthing and lightning protection. Types of Batteries.

Text Books / Reference Books

- T1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", McGraw Hill.
- T2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.
- T3. Ritu Sahdev, "Basic Electrical Engineering", Khanna Publishing House.
- T4. S. Singh, P.V. Prasad, "Electrical Engineering: Concepts and Applications" Cengage
- R1. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
" R2. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press.
- R3. V. D. Toro, "Electrical Engineering Fundamentals", Pearson India

Course Outcomes

Course Outcome	Statement (On completion of this course, the student will be able to)
$\mathbf{C O 1}$	Apply Kirchhoff's laws in solving DC Circuits.
$\mathbf{C O 2}$	Understand the steady state behavior of single phase and three phase A.C circuits.
$\mathbf{C O 3}$	Identify the application areas of a single phase two winding transformer and calculate their efficiency.
$\mathbf{C O 4}$	Elaborate the working principle of D.C and A.C electrical machines with their application.
$\mathbf{C O 5}$	Explain the working of low voltage electrical installation Equipment.

LECTURE-1

CONTENT

$>$ Concept of Network and Circuit
$>$ Classification of Electrical Network
$>$ Active \& Passive Network
> Unilateral \& Bilateral Network
> Linear \& Non-Linear Network
$>$ Ohm's Law
$>$ Types of Sources
$>$ Voltage Source
> Ideal Voltage Source
> Practical Voltage Source
$>$ Current Source
> Ideal Current Source
> Practical Current Source
>Source Transformation

Electrical Elements

$R \xi_{i}^{k}$
RESISTOR CAPACITOR INDUCTOR

Concept of Network and Circuit

Network

- A combination of various electric elements like Resistor, Inductor, Capacitor, Voltage source \& Current source) etc. in which there may or may not be close path is called an electrical network.

- A combination of various electrical elements like Resistor, Inductor, Capacitor, Voltage source \& Current source) etc. in which there is a close path is called an electrical circuit.

Classification of Electrical Network

Based on Linearity

Linear

Non
Linear

Based on Energy

Active Element

- An element which can supply or delivered energy is called Active Element.
- For e.g.- Voltage Source, Current Source, Battery, Generator, Transistor etc.

Passive Element

- An element which can dissipate or absorbs energy is called Passive Element.
- For e.g.- Resistor, Capacitor, Inductor, Diode (General Purpose Diode)

Based on Direction

Unilateral Element

- An element which V-I characteristics changes with change in direction of current is called Unilateral Element
- For e.g.- Diode.

Bilateral Element

- An element which V-I characteristics does not changes with change in direction of current is called Bilateral Element
- For e.g.- Resistor, Capacitor and Inductor.

Unilateral Element:-

Forward biased

$\mathrm{I}_{1} \neq \mathrm{I}_{2}$

Bilateral Element:-

Based on Linearity

Linear Element

- An Element which obey the principle of Ohm's law is called Linear Element or an element which obey the principle of superposition and homogeneity is also called Linear element.
- For e.g.- Resistor, Inductor and Capacitor.

Non-Linear Element

- An Element which does not obey the principle of Ohm's law is called Non-Linear Element or an element which doesn't obey the principle of superposition and homogeneity is also called Non-Linear element.
- For e.g.- Diode

Ohm's Law

- Statement:-Voltage drop across a conductor is directly proportional to the current passing through that elements if atmospheric condition (temperature, pressure and humidity etc.) kept constant.

Ohm's Law

- Explanation:-

$$
\boldsymbol{V}_{\boldsymbol{R}} \propto \boldsymbol{I}=\boldsymbol{R} * \boldsymbol{I}
$$

Types of Sources

Voltage Source

Ideal
Voltage Source

Practical Voltage

 Source
Current Source

Ideal Current Source

Practical Current Source

Voltage Source

- Ideal Voltage Source:- It gives constant voltage across its terminals irrespective of current drawn through its terminals.
V_{L} or $V_{t}($ Load or Terminal Voltage $)=V_{s}($ Supply Voltage $)$
- Note:- Internal resistance of Ideal Voltage Source is Zero. [$\left.R_{S}=0\right]$
- Practical Voltage Source:- It doesn't gives constant voltage and have some small internal resistances. That's why It's terminal voltage dependent on load current.

Practical Voltage Source

Practical Voltage Source Graph

$$
\text { By KVL: }-\downarrow V_{t} \text { or } \downarrow V_{L}=\left(V_{S}-\uparrow I_{L} R_{S}\right)
$$

Current source

- Ideal Current Source:- Source which gives constant Load current at its terminal irrespective of the load voltage or terminal voltage is called Ideal Current Source.

```
I
```

- Note:- Internal resistance of Ideal Current Source is Infinite. [$\left.R_{s h}=\infty\right]$
- Practical Current Source:- It doesn't gives constant Load Current and have very high internal resistances. That's why It's Load Current dependent on Load Voltage or its terminal Voltage.

$$
\begin{gathered}
\text { ByKCL: }-I_{S}=I_{s h}+I_{L} \\
I_{L}=I_{S}-I_{s h} \\
\downarrow I_{L}=I_{S}-\frac{\uparrow V_{L}}{R_{s h}}
\end{gathered}
$$

Source Transformation

- Voltage Source \rightarrow Current Source
- For e.g.-

Source Transformation

- Current Source \rightarrow Voltage Source

- For e.g.-

LECTURE-2

CONTENT

> Kirchhoff's Law
> Kirchhoff's Current Law
> Kirchhoff's Voltage Law
> Current Division Rule
$>$ Voltage Division Rule
$>$ Basic Concept Related to Node, Junction, Branch, Mesh and Loop

Kirchhoff's Law

Kirchhoff's
 Law

First Law
(Kirchhoff's
Current Law)

Second Law (Kirchhoff's
Voltage Law)

Kirchhoff's Current Law

" Statement:- It is based on "Law of Conservation of Charge." It states that the algebraic sum of currents at the junction at any instant is equal to zero.

$$
\sum_{j=1}^{k} I_{j}=0
$$

$$
\begin{aligned}
& \text { Applying KCL:- } \\
& \qquad \begin{array}{l}
1_{1}+I_{2}-I_{3}-1_{4}-I_{5}=0 \\
1_{1}+I_{2}=I_{3}+1_{4}+I_{5}
\end{array}
\end{aligned}
$$

Kirchhoff's Current Law

- Concept:- It is based on "Law of Conservation of Charge."

$$
\frac{d q_{1}}{d t}+\frac{d q_{2}}{d t}-\frac{d q_{3}}{d t}-\frac{d q_{4}}{d t}-\frac{d q_{5}}{d t}=0
$$

$$
d q_{1}+d q_{2}-d q_{3}-d q_{4}-d q_{5}=0
$$

- i.e. number of electron per second enter the node is equal to the number of electron leave the node.

Kirchhoff's Current Law

- Application:- In Nodal Analysis and to determine a branch current.
- Limitations:- 1. Only apply at a node where more than two branches are connect.

2. Only applicable in a Lumped Network.

Kirchhoff's Voltage Law

" Statement:- It is based on "Law of Conservation of Energy." It states that the algebraic sum of voltages in a close path (Mesh or Loop) is equal to zero.

$$
\sum_{j=1}^{k} V_{j}=0
$$

Where:- V_{j} is the voltage drop or voltage rise across the $j_{t h}$ element in a close path and there are K elements.

Kirchhoff's Voltage Law

$$
\mathrm{H}=\mathrm{H}_{1}+\mathrm{H}_{2}+\mathrm{H}_{3}
$$

Where:- $H \rightarrow$ Energy supplied by the source E
$H 1, H 2 \& H 3 \rightarrow$ Energy dissipate from R1, R2 \& R3 respectively.
In electrical circuit, work done is equivalent to energy and work done per unit charge is known as voltage. So:-

$$
\frac{W}{Q}=\frac{W_{1}}{Q}+\frac{W_{2}}{Q}+\frac{W_{3}}{Q}
$$

$$
\mathrm{E}=V_{1}+V_{2}+V_{3}
$$

$$
E-V_{1}-V_{2}-V_{3}=0
$$

- The above equation is the direct mathematical statement of Kirchhoff's voltage law.
- Note:- All voltage drops are treated as a negative sign and voltage rise are treated as a positive sign or vice-versa.
- Application:-

1. In Mesh Analysis (to determine a mesh or branch current).
2. To determine a voltage across an electrical element.

- Limitations:-

1. Only applicable in a Lumped Network.
2. There should be a close path.

Current Division Rule

- Current division always takes place in parallel path.

$$
I_{1}=I *\left[\frac{R_{2}}{R_{1}+R_{2}}\right]
$$

$$
\boldsymbol{I}_{2}=I *\left[\frac{\boldsymbol{R}_{\mathbf{1}}}{\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}}\right]
$$

Current Division Rule

$$
I_{1}=I *\left[\frac{\left(R_{2} I I R_{3}\right)}{\left(R_{2} I R_{3}\right)+R_{1}}\right]
$$

$$
I_{2}=I *\left[\frac{\left(R_{1} I I R_{3}\right)}{\left(R_{1} I I R_{3}\right)+R_{2}}\right]
$$

$$
I_{3}=I *\left[\frac{\left(R_{1} I I R_{2}\right)}{\left(R_{1} I I R_{2}\right)+R_{3}}\right]
$$

Voltage Division Rule

- Voltage division always takes place in series.

$$
V_{1}=V *\left[\frac{R_{1}}{R_{1}+R_{2}+R_{3}}\right]
$$

$$
\boldsymbol{V}_{2}=\boldsymbol{V} *\left[\frac{\boldsymbol{R}_{\mathbf{2}}}{\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}+\boldsymbol{R}_{\mathbf{3}}}\right]
$$

$$
V_{3}=V *\left[\frac{R_{3}}{R_{1}+R_{2}+R_{3}}\right]
$$

Basic Concept Related to Node, Junction, Branch, Mesh and Loop

Node:- The point at which two or more than two circuit elements are connected is known as Node. In the above figure $a, b, c, d \& g$ are Nodes.

$$
\text { Total number of Nodes }(\mathrm{N})=5
$$

- Junction:- It is the point in a network where three or more than three circuit elements are connected. It is also called a "Principal Node".

In the given figure a, b \& g are Junctions.

$$
\text { Number of Junction }(\mathrm{J})=3
$$

- Reference Node:- The Node which is at zero potential or ground potential is known as "Reference Node" or "Datum Node".

In the given figure $h, g, f \& e$ are combine a single node which is "Reference Node" or "Datum Node" i.e. number of reference node is always one.

- Branch:- It contains elements. It is that part of a network which lies between nodes.

In the given figure:-

$$
\text { Number of Branch }(B)=7
$$

- Mesh:- It is the shortest close path which is a part of loop. It can't be further divided into other close path. "Every Mesh is a Loop but every Loop is not a Mesh". For e.g.- caghc, abfga \& bdefb

$$
\text { Number of Mesh }(M)=3
$$

- Loop:- It is an any close path of the Network. For e.g.- caghc , abfga , bdefb , cabfghc , abdefga \& cabdefghc.

- Note:-

$$
M=B-N+1
$$

Where:-
M :- Number of Mesh
B:- Number of Branch
$\mathrm{N}:-\mathrm{Number}$ of Node

LECTURE-3 Mesh Analysis

Mesh Analysis

- Step 1:- Identify the number of Mesh in the circuit.
- Step 2:- Assume current in each Mesh (any direction).
- Step 3:- Apply KVL in each Mesh and write Mesh equation for each Mesh.
- Step 4:- Solve the Mesh equation and find Mesh current.
- Note:-

```
Number of Mesh Equation = Number of Mesh
Number of Mesh Equation = Number of Mesh
```

Problem:- Find out the current in 2Ω resistance in the given figure using Loop analysis.

Solution:-

Apply KVL in eacn mesn:-
Mesh (1):-

$$
\begin{align*}
& 40-4 I_{1}-2\left(I_{1}-I_{2}\right)-30=0 \\
& 6 I_{1}-2 I_{2}=10 \ldots \ldots \ldots \ldots \ldots(i) \tag{i}
\end{align*}
$$

Mesh (2):-

$$
\begin{align*}
& 30-2\left(I_{2}-I_{1}\right)-3 I_{2}-10=0 \\
& -2 I_{1}+5 I_{2}=20 \ldots \ldots \ldots \ldots \ldots .(i i) \tag{ii}
\end{align*}
$$

By solving equation (i) \& (ii) we get:-
Mesh Currents:-

$$
I_{1}=3.46 A ; I_{2}=5.38 \mathrm{~A}
$$

$$
\downarrow I_{2 \Omega}=I_{1}-I_{2}=-1.92 \mathrm{~A}
$$

Problem:-To find out the Mesh Current in the given circuit.

Solution:-

Apply KVL in each mesh:-

Mesh (1):-

$$
60-7 I_{1}-8\left(I_{1}-I_{2}\right)=0
$$

$$
\begin{equation*}
15 I_{1}-8 I_{2}+0 I_{3}=60 \tag{i}
\end{equation*}
$$

Mesh (2):-

$$
\begin{align*}
& -12 I_{2}-10\left(I_{2}-I_{3}\right)-8\left(I_{2}-I_{1}\right)=0 \\
& 8 I_{1}-30 I_{2}+10 I_{3}=0 \ldots \ldots \ldots .(i i) \tag{ii}
\end{align*}
$$

Solution:-

Mesh (3):-

$$
-15-10\left(I_{3}-I_{2}\right)-5 I_{3}-6 I_{3}=0
$$

$$
\begin{equation*}
0 I_{1}+10 I_{2}-21 I_{3}=15 \tag{iiii}
\end{equation*}
$$

By solving equation (i), (ii) \& (iii) we get:-

- Mesh Currents:-

$$
I_{1}=4.632 A ; I_{2}=1.185 A ; I_{3}=-0.15 A
$$

- Branch Currents:-

$$
\begin{gathered}
I_{7 \Omega}=I_{1}=4.632 \mathrm{~A} \\
I_{8 \Omega}=\left(I_{1}-I_{2}\right)=3.447 \mathrm{~A} \downarrow \\
I_{12 \Omega}=I_{2}=1.185 \mathrm{~A} \\
I_{10 \Omega}=\left(I_{2}-I_{3}\right)=1.335 \mathrm{~A} \\
I_{5 \Omega}=I_{3}=-0.15 \mathrm{~A} \\
I_{6 \Omega}=I_{3}=-0.15 \mathrm{~A}
\end{gathered}
$$

- Voltage Drop:-

$$
V_{5 \Omega}=I_{5 \Omega} * 5=I_{3} * 5=-0.15 * 5
$$

$$
V_{5 \Omega}=-0.75 \mathrm{~V}
$$

- Power Loss:-

$$
P_{5 \Omega}=I_{5 \Omega}^{2} * 5=(-0.15)^{2} * 5=0.1125 \mathrm{~W}
$$

Problem:- Apply Mesh analysis and obtain the

 current through 5Ω resistor in the given circuit.

Solution:-

Apply KVL in each mesh:-
Mesh (1):-

$$
\begin{equation*}
I_{1}=2 A \tag{i}
\end{equation*}
$$

Mesh (2):-

$$
-5 I_{2}-2\left(I_{2}-I_{3}\right)-2\left(I_{2}-I_{1}\right)=0
$$

$$
\begin{equation*}
9 I_{2}-2 I_{3}=4 \tag{ii}
\end{equation*}
$$

Mesh (3):-

$$
\begin{align*}
& -100-2\left(I_{3}-I_{2}\right)-4 I_{3}=0 \\
& 2 I_{2}-6 I_{3}=100 \ldots \ldots \ldots \ldots \ldots \tag{iii}
\end{align*}
$$

By solving equation (ii) \& (iii) we get:-
Mesh Currents:-

$$
I_{2}=-3.52 A ; I_{3}=-17.84 A
$$

$$
I=I_{5 \Omega}=I_{2}=-3.52 \mathrm{~A}
$$

Answer

Problem:- Determine current in 4Ω resistor by using Mesh analysis in the circuit shown in figure below.

Solution:-

Apply KVL in each mesh:-
Mesh (3):-

$$
\begin{equation*}
I_{3}=-2 A \tag{i}
\end{equation*}
$$

Mesh (1):-

$$
\begin{align*}
& 8-5 I_{1}-4\left(I_{1}-I_{2}\right)=0 \\
& 9 I_{1}-4 I_{2}=8 \ldots \ldots \ldots \ldots \ldots \tag{ii}
\end{align*}
$$

Mesh (2):-

$$
-6 I_{2}-2\left(I_{2}-I_{3}\right)-4\left(I_{2}-I_{1}\right)=0
$$

$$
\begin{equation*}
4 I_{1}-12 I_{2}=4 \tag{iii}
\end{equation*}
$$

By solving equation (ii) \& (iii) we get:-
Mesh Currents:-

$$
I_{1}=0.869 A ; I_{2}=-0.043 A
$$

$$
\downarrow I_{4 \Omega}=I_{1}-I_{2}=0.1299 A
$$

Answer

LECTURE-4 Mesh Analysis

Problem:- Using Mesh analysis find out the current in $20 \Omega, 40 \Omega$ and 15Ω resistor in the given circuit.

Solution:-

Apply KVL in each mesh:-

Mesh (1):-

$$
\begin{equation*}
I_{1}=0.5 \mathrm{~A} \tag{i}
\end{equation*}
$$

Mesh (2):-

$$
\begin{align*}
& -10-60\left(I_{2}-I_{1}\right)-20 I_{2}-15\left(I_{2}-I_{3}\right)=0 \\
& -95 I_{2}+15 I_{3}=-20 \ldots \ldots \ldots \ldots \ldots(i i) \tag{ii}
\end{align*}
$$

Mesh (4):-

$$
\begin{equation*}
I_{4}=-0.6 A \tag{iiii}
\end{equation*}
$$

Mesh (3):-

$$
\begin{align*}
& 10-15\left(I_{3}-I_{2}\right)-40 I_{3}-100\left(I_{3}-I_{4}\right)=0 \\
& 15 I_{2}-155 I_{3}=50 \ldots \ldots \ldots \ldots \ldots(\text { iv }) \tag{iv}
\end{align*}
$$

By solving equation (ii) \& (iv) we get:-
Mesh Currents:-

$$
I_{2}=0.162 A ; I_{3}=-0.306 A
$$

Branch Currents:-

$$
\begin{array}{l|l}
I_{20 \Omega}=I_{2}=0.162 A & \text { Answer }
\end{array}
$$

$$
\begin{array}{l|l}
I_{40 \Omega}=I_{3}=-0.306 A & \text { Answer }
\end{array}
$$

$$
I_{15 \Omega}=\left(I_{2}-I_{3}\right)=0.468 A
$$

Problem:- Calculate $I_{1} \& I_{2}$ by using Mesh analysis.

Solution:-

Apply KVL in each mesh:-
Mesh (3):-

$$
I_{3}=10 \mathrm{~A}
$$

Mesh (1):-

$$
\begin{gather*}
-20-8 I_{1}-4\left(I_{1}-10\right)-4\left(I_{1}+I_{2}\right)=0 \\
16 I_{1}+4 I_{2}=20 \ldots \ldots \ldots \ldots .(i) \tag{i}
\end{gather*}
$$

Mesh (2):-

$$
\begin{gather*}
-20-8 I_{2}-4\left(I_{2}+10\right)-4\left(I_{1}+I_{2}\right)=0 \\
4 I_{1}+16 I_{2}=-60 \ldots \ldots \ldots .(i i) \tag{ii}
\end{gather*}
$$

By solving equation (i) \& (ii) we get:-
Mesh Currents:-

$$
I_{1}=2.33 A ; I_{2}=-4.33 A
$$

Answer

Super-Mesh

- If a current source is common between two Mesh then it is called a Super-Mesh. In this case don't directly apply KVL in both Mesh. Apply KVL to the Super-Mesh (Combined Mesh) and apply KCL at common Node to establish the relation between Mesh Current and Current Source.

Problem:- Find out the Mesh Current in the given figure using Mesh analysis.

- Branch h-e consists current source between Mesh-1 and Mesh-

2. That's why it is a Super-Mesh:-

Now apply KVL to Super-Mesh (g-h-a-d-e-f-g):-
Apply KVL in Mesh-3 :-

$$
\begin{align*}
& 5 I_{1}-2 I_{2}-6\left(I_{2}-I_{3}\right)+60=0 \\
& 5 I_{1}+8 I_{2}-6 I_{3}=60 \ldots \ldots \ldots \ldots \ldots \tag{i}
\end{align*}
$$

Apply KCL at Node h:-

$$
\begin{array}{r}
I_{1}+5=I_{2} \\
-I_{1}+I_{2}=5 \ldots \ldots \ldots . . \tag{ii}
\end{array}
$$

Apply KVL in Mesh-3 :-

$$
\begin{gathered}
-50-6\left(I_{3}-I_{2}\right)-3 I_{3}=0 \\
6 I_{2}-9 I_{3}=50 \ldots \ldots \quad(i i i)
\end{gathered}
$$

By solving equation (i),(ii) \& (iii) we get:-
Mesh Currents:-

$$
I_{1}=0.74 A ; I_{2}=5.74 A ; I_{3}=-1.72 A \quad \text { Answer }
$$

LECTURE-5 Nodal Analysis

Nodal Analysis

- Step 1:- Take a reference Node at generally ground $(\mathrm{V}=0)$.
- Step 2:- Identify number of Nodes.
- Step 3:- Assume current in each branch (Any direction).
- Step 4:- Apply KCL at each Node and make equations.
- Note:-

$$
\text { Number of Node Equations }=(N-1)
$$

Where \mathbf{N} is a Principal Node

- Step 5:- Solve equations to find Node voltages.
- Step 6:- Put Node voltages in equations to find out Branch Currents.

Problem:- Using Nodal analysis find out current in 10Ω resistance.

Solution:-
Node (N) $=3$
So number of Nodal Equation $=(\mathbf{N}-1)=2$

Apply KCL at Node-1:-

$$
\begin{gather*}
I_{1}=I_{2}+I_{3} \\
I_{1}-I_{2}-I_{3}=0 \\
\frac{25-V_{1}}{5}-\frac{V_{1}}{2}-\frac{V_{1}-V_{2}}{10}=0 \\
-8 V_{1}+V_{2}=-50 \ldots \ldots \ldots \ldots ~ \tag{i}
\end{gather*}
$$

Apply KCL at Node-2:-

$$
\begin{gathered}
I_{3}=I_{4}+I_{5} \\
I_{3}-I_{4}-I_{5}=0 \\
\frac{V_{1}-V_{2}}{10}-\frac{V_{2}}{4}-\frac{V_{2}+50}{2}=0
\end{gathered}
$$

$$
\begin{equation*}
2 V_{1}-17 V_{2}=500 \tag{ii}
\end{equation*}
$$

By solving equation (i) \& (ii) we get:-

$$
V_{1}=2.61 V ; V_{2}=-29.10 V
$$

$$
I_{3}=\frac{V_{1}-V_{2}}{10}=3.171 \mathrm{~A}
$$

Answer

Problem:- Determine Current through 15Ω resistance by Node analysis.

Solution:-

$$
\operatorname{Node}(N)=3
$$

Number of Nodal Equation $=(\mathbf{N}-1)=2$

Apply KCL at Node-1:-

$$
\begin{gather*}
I_{1}=I_{2}+I_{3} \\
I_{1}-I_{2}-I_{3}=0 \\
\frac{10-V_{1}}{2}-\frac{V_{1}}{10}-\frac{V_{1}-V_{2}}{5}=0 \\
8 V_{1}-2 V_{2}=50 \ldots \ldots \ldots \ldots \ldots \ldots \tag{i}
\end{gather*}
$$

Apply KCL at Node-2:-

$$
\begin{gather*}
I_{3}+I_{5}=I_{4}+\frac{1}{3} \\
I_{3}-I_{4}-\frac{1}{3}+I_{5}=0 \\
\frac{V_{1}-V_{2}}{5}-\frac{V_{2}}{15}-\frac{1}{3}+\frac{18-V_{2}}{3}=0 \\
3 V_{1}-9 V_{2}=-85 \ldots \ldots \ldots \ldots . . \text { (ii) } \tag{ii}
\end{gather*}
$$

By solving equation (i) \& (ii) we get:-

$$
V_{1}=9.39 \mathrm{~V} ; V_{2}=12.57 \mathrm{~V}
$$

$$
I_{4}=\frac{V_{2}}{15}=0.838 \mathrm{~A}
$$

Answer

miet

LECTURE-6 Nodal Analysis

Problem:- Determine Current through 8Ω resistance by Node analysis.

Solution:-

Node (N) = 3
Number of Nodal Equation $=(\mathbf{N}-1)=2$

Apply KCL at Node-1:-

$$
\begin{gathered}
I_{1}=I_{2}+I_{3} \\
I_{1}-I_{2}-I_{3}=0 \\
\frac{10-10-V_{1}}{5}-\frac{V_{1}}{2}-\frac{V_{1}-V_{2}}{8}=0
\end{gathered}
$$

$$
\begin{equation*}
33 V_{1}-5 V_{2}=0 \tag{i}
\end{equation*}
$$

Apply KCL at Node-2:-

$$
\begin{gather*}
I_{3}=I_{4}+I_{5} \\
I_{3}-I_{4}-I_{5}=0 \\
\frac{V_{1}-V_{2}}{8}-\frac{V_{2}}{3}-\frac{V_{2}+25}{5}=0 \\
15 V_{1}-79 V_{2}=600 \ldots \ldots \ldots . \tag{ii}
\end{gather*}
$$

By solving equation (i) \& (ii) we get:-

$$
V_{1}=-1.184 V ; V_{2}=-7.819 V
$$

$$
I_{8 \Omega}=I_{3}=\frac{V_{1}-V_{2}}{8}=0.829 \mathrm{~A}
$$

Problem:- Using Nodal analysis find the current throuah 1Ω resistance.

Solution:-

$$
\begin{gathered}
\text { Node }(\mathrm{N})=3 \\
\text { Number of Nodal Equation }=(\mathrm{N}-1)=2
\end{gathered}
$$

Apply KCL at Node-1:-

$$
\begin{gathered}
I_{1}=I_{2}+I_{3} \\
I_{1}-I_{2}-I_{3}=0 \\
\frac{2-V_{1}}{2}-\frac{V_{1}}{3}-\frac{V_{1}-V_{2}}{1}=0
\end{gathered}
$$

$$
\begin{equation*}
11 V_{1}-6 V_{2}=6 \tag{i}
\end{equation*}
$$

Apply KCL at Node-2:-

$$
\begin{gather*}
I_{3}+2=I_{4} \\
I_{3}-I_{4}+2=0 \\
\frac{V_{1}-V_{2}}{1}-\frac{V_{2}}{5}+2=0 \\
-5 V_{1}+6 V_{2}=10 \ldots \ldots \tag{ii}
\end{gather*}
$$

By solving equation (i) \& (ii) we get:-

$$
V_{1}=2.66 \mathrm{~V} ; V_{2}=3.88 \mathrm{~V}
$$

$$
I_{1 \Omega}=I_{3}=\frac{V_{1}-V_{2}}{1}=-1.22 \mathrm{~A} \quad \text { Answer }
$$

Problem:- Find the current in all resistances using Nodal analysis.
(AKTU 2022-2023 EVEN SEM.)

>	Solution:- $\begin{array}{c}\text { Node }(N)=3 \\ \text { So number of } \\ \text { Nodal Equation }=(N-1)=2\end{array}$

Apply KCL at Node-1:-

$$
\begin{gathered}
10=I_{1}+I_{2}+I_{3} \\
10-I_{1}-I_{2}-I_{3}=0 \\
10-\frac{V_{1}}{2}-\frac{V_{1}-V_{2}}{3}-\frac{V_{1}-V_{3}}{5}=0 \\
31 V_{1}-10 V_{2}-6 V_{3}=300 \ldots \ldots \ldots \ldots .
\end{gathered}
$$

(i)

Apply KCL at Node-2:-

$$
\begin{gather*}
I_{2}=I_{4}+I_{5} \\
I_{2}-I_{4}-I_{5}=0 \\
\frac{V_{1}-V_{2}}{3}-\frac{V_{2}}{5}-\frac{V_{2}-V_{3}}{1}=0 \\
-5 V_{1}+23 V_{2}-15 V_{3}=0 \ldots \ldots \ldots . . \tag{ii}
\end{gather*}
$$

Apply KCL at Node-3:-

$$
\begin{gathered}
I_{3}+I_{5}=I_{6}+2 \\
I_{3}+I_{5}-I_{6}-2=0 \\
\frac{V_{1}-V_{3}}{5}+\frac{V_{2}-V_{3}}{1}-\frac{V_{3}}{2}-2=0
\end{gathered}
$$

$$
\begin{equation*}
2 V_{1}+10 V_{2}-17 V_{3}=20 . \tag{iii}
\end{equation*}
$$

By solving equation (i), (ii) \& (iii) we get:-

$$
V_{1}=11.58 \mathrm{~V} ; V_{2}=4.28 \mathrm{~V} ; V_{3}=2.70 \mathrm{~V}
$$

$$
I_{3}=\frac{V_{1}-V_{3}}{5}=1.776 \mathrm{~A}
$$

$$
I_{2}=\frac{V_{1}-V_{2}}{3}=2.43 \mathrm{~A}
$$

$$
I_{1}=\frac{V_{1}}{2}=5.79 \mathrm{~A}
$$

Answer

$$
\begin{gathered}
I_{4}=\frac{V_{2}}{5}=0.856 \mathrm{~A} \\
I_{5}=\frac{V_{2}-V_{3}}{1}=1.58 \mathrm{~A} \\
I_{6}=\frac{V_{3}}{2}=1.35 \mathrm{~A}
\end{gathered}
$$

Problems
 Mesh analysis
 \&
 Nodal Analysis

Mesh Analysis

Problem:1 Find the current I in figure given below using mesh analysis.

Ans:

Super-mesh

Problem: 2 Find the current in all branches by using mesh analysis.

Super-node

Problem: 3 Calculate the resistive branch current by using nodal analysis.

THANK YOU

miet

