Fundamental of Electrical Engineering UNIT-1 D.C Circuits

Milt

Course Structure(T+P)

Theory(T)

Name of the Course: Fundamental of Electrical EngineeringCourse Code: BEE 101(First Sem.) / BEE 201(Second Sem.)

Practical(P)

Name of the Course: Basic Electrical Engineering Lab Course Code : BEE 151(First Sem.) / BEE 251(Second Sem.)

Unit 1

D.C Circuits: Electrical circuit elements (R, L and C), Concept of active and passive elements, voltage and current sources, concept of linearity, unilateral and bilateral elements. Kirchhoff^{*}s laws, Mesh and nodal methods of analysis. **Unit 2**

Steady- State Analysis of Single Phase AC Circuits: Representation of Sinusoidal waveforms – Average and effective values, Form and peak factors. Analysis of single phase AC Circuits consisting R-L-C combination (Series and Parallel) Apparent, active & reactive power, Power factor. Concept of Resonance in series & parallel circuits, bandwidth and quality factor.

Three phase balanced circuits, voltage and current relations in star and deta connections.

Unit 3

Transformers: Magnetic circuits, ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency.

Unit 4

Electrical machines: DC machines: Principle & Construction, Types, EMF equation of generator and torque equation of motor, applications of DC motors (simple numerical problems)

Three Phase Induction Motor: Principle & Construction, Types, Slip-torque characteristics, Applications (Numerical problems related to slip only)

Single Phase Induction motor: Principle of operation and introduction to methods of starting, applications. Three Phase Synchronous Machines: Principle of operation of alternator and synchronous motor and their applications

Unit 5

Electrical Installations: Introduction of Switch Fuse Unit (SFU), MCB, ELCB, MCCB, ACB. Types of Wires, Cables and Bus-bars. Fundamentals of earthing and lightning protection. Types of Batteries.

Text Books / Reference Books

- T1. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", McGraw Hill.
- T2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.
- T3. Ritu Sahdev, "Basic Electrical Engineering", Khanna Publishing House.
- T4. S. Singh, P.V. Prasad, "Electrical Engineering: Concepts and Applications" Cengage
- R1. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- R2. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press.
- R3. V. D. Toro, "Electrical Engineering Fundamentals", Pearson India

Course Outcome	Statement (On completion of this course, the student will be able to)
CO1	Apply Kirchhoff's laws in solving DC Circuits.
CO2	Understand the steady state behavior of single phase and three phase A.C circuits.
CO3	Identify the application areas of a single phase two winding transformer and calculate their efficiency.
CO4	Elaborate the working principle of D.C and A.C electrical machines with their application.
CO5	Explain the working of low voltage electrical installation Equipment.

LECTURE-1

CONTENT

Concept of Network and Circuit > Classification of Electrical Network Active & Passive Network Unilateral & Bilateral Network Linear & Non-Linear Network > Ohm's Law > Types of Sources Voltage Source Ideal Voltage Source Practical Voltage Source Current Source Ideal Current Source Practical Current Source Source Transformation

Electrical Elements

Concept of Network and Circuit

Network

 A combination of various electric elements like Resistor, Inductor, Capacitor, Voltage source & Current source) etc. in which there may or may not be close path is called an electrical network.

Circuit

 A combination of various electrical elements like Resistor, Inductor, Capacitor, Voltage source & Current source) etc. in which there is a close path is called an electrical circuit.

Classification of Electrical Network

Based on Energy

Active Element

Passive Element

- An element which can supply or delivered energy is called Active Element.
- For e.g.- Voltage Source, Current Source, Battery, Generator, Transistor etc.

- An element which can dissipate or absorbs energy is called Passive Element.
- For e.g.- Resistor, Capacitor, Inductor, Diode (General Purpose Diode)

Based on Direction

Unilateral Element

Bilateral Element

- An element which V-I characteristics changes with change in direction of current is called Unilateral Element
- For e.g.- Diode.

- An element which V-I characteristics does not changes with change in direction of current is called Bilateral Element
- For e.g.- Resistor, Capacitor and Inductor.

Unilateral Element:-

Bilateral Element:-

Based on Linearity

Linear Element

- An Element which obey the principle of Ohm's law is called Linear Element or an element which obey the principle of superposition and homogeneity is also called Linear element.
- For e.g.- Resistor, Inductor and Capacitor.

Non-Linear Element

- An Element which does not obey the principle of Ohm's law is called Non-Linear Element or an element which doesn't obey the principle of superposition and homogeneity is also called Non-Linear element.
- For e.g.- Diode

Ohm's Law

Statement:-Voltage drop across a conductor is directly proportional to the current passing through that elements if atmospheric condition (temperature, pressure and humidity etc.) kept constant.

Ohm's Law

Types of Sources

 Ideal Voltage Source:- It gives constant voltage across its terminals irrespective of current drawn through its terminals.

 V_L or V_t (Load or Terminal Voltage) = V_s (Supply Voltage)

• Note:- Internal resistance of Ideal Voltage Source is Zero. $[R_S = 0]$

 Practical Voltage Source:- It doesn't gives constant voltage and have some small internal resistances. That's why It's terminal voltage dependent on load current.

By KVL: $-\downarrow V_t$ or $\downarrow V_L = (V_S - \uparrow I_L R_S)$

 Ideal Current Source:- Source which gives constant Load current at its terminal irrespective of the load voltage or terminal voltage is called Ideal Current Source.

 I_L (Load Current) = I_s (Supply Current or Source Current)

• Note:- Internal resistance of Ideal Current Source is Infinite. $[R_{sh} = \infty]$

 Practical Current Source:- It doesn't gives constant Load Current and have very high internal resistances. That's why It's Load Current dependent on Load Voltage or its terminal Voltage.

$$By KCL: - I_S = I_{sh} + I_L$$
$$I_L = I_S - I_{sh}$$
$$\downarrow I_L = I_S - \frac{\uparrow V_L}{R_{sh}}$$

Source Transformation

Voltage Source → Current Source

Source Transformation

Current Source → Voltage Source

• For e.g.-

LECTURE-2

CONTENT

Kirchhoff's Law

>Kirchhoff's Current Law

Kirchhoff's Voltage Law

- Current Division Rule
- Voltage Division Rule

Basic Concept Related to Node, Junction, Branch, Mesh and Loop

Kirchhoff's Law

Kirchhoff's Law

First Law (Kirchhoff's Current Law)

Second Law (Kirchhoff's Voltage Law)

Kirchhoff's Current Law

Statement:- It is based on "Law of Conservation of Charge."

It states that the algebraic sum of currents at the junction at any

instant is equal to zero.

$$\sum_{j=1}^k I_j = \mathbf{0}$$

Applying KCL:-

|1 + |2 - |3 - |4 - |5 = 0|1 + |2 = |3 + |4 + |5

Kirchhoff's Current Law

Concept:- It is based on "Law of Conservation of Charge."

$$\frac{dq_1}{dt} + \frac{dq_2}{dt} - \frac{dq_3}{dt} - \frac{dq_4}{dt} - \frac{dq_5}{dt} = \mathbf{0}$$

$$dq_1 + dq_2 - dq_3 - dq_4 - dq_5 = 0$$

 i.e. number of electron per second enter the node is equal to the number of electron leave the node.

Kirchhoff's Current Law

 Application:- In Nodal Analysis and to determine a branch current.

- Limitations:- 1. Only apply at a node where more than two branches are connect.
 - 2. Only applicable in a Lumped Network.

Kirchhoff's Voltage Law

• Statement:- It is based on "Law of Conservation of Energy." It

states that the algebraic sum of voltages in a close path (Mesh or

Loop) is equal to zero.

$$\sum_{j=1}^k V_j = 0$$

Where:- V_j is the voltage drop or voltage rise across the j_{th} element

in a close path and there are K elements.

Kirchhoff's Voltage Law

$\mathbf{H} = H_1 + H_2 + H_3$

Where:- $H \rightarrow$ Energy supplied by the source E

*H*1, *H*2 & *H*3 \rightarrow Energy dissipate from R1, R2 & R3 respectively.

In electrical circuit, work done is equivalent to energy and work done per unit charge is known as voltage. So:-

$$\frac{W}{Q} = \frac{W_1}{Q} + \frac{W_2}{Q} + \frac{W_3}{Q}$$

$$\mathsf{E} = V_1 + V_2 + V_3$$

$$E - V_1 - V_2 - V_3 = 0$$

- The above equation is the direct mathematical statement of Kirchhoff's voltage law.
- Note:- All voltage drops are treated as a negative sign and voltage rise are treated as a positive sign or vice-versa.
- Application:-
- 1. In Mesh Analysis (to determine a mesh or branch current).
- 2. To determine a voltage across an electrical element.
- Limitations:-
- 1. Only applicable in a Lumped Network.
- 2. There should be a close path.

Current Division Rule

• Current division always takes place in parallel path.

$$I_1 = I * \left[\frac{R_2}{R_1 + R_2} \right]$$

$$I_2 = I * \left[\frac{R_1}{R_1 + R_2} \right]$$

Current Division Rule

$$I_1 = I * \left[\frac{(R_2 I I R_3)}{(R_2 I I R_3) + R_1} \right]$$

$$I_2 = I * \left[\frac{(R_1 I I R_3)}{(R_1 I I R_3) + R_2} \right]$$

Voltage Division Rule

Voltage division always takes place in series.

Basic Concept Related to Node, Junction, Branch, Mesh and Loop

Node:- The point at which two or more than two circuit elements are connected is known as Node. In the above figure a, b, c, d & g are Nodes.

Total number of Nodes (N) = 5

Milt

In the given figure a , b & g are Junctions.

Number of Junction (J) = 3

 Reference Node:- The Node which is at zero potential or ground potential is known as "Reference Node" or "Datum Node".

In the given figure h, g, f & e are combine a single node which is **"Reference Node"** or **"Datum Node"** i.e. number of reference node is always one.

 Branch:- It contains elements. It is that part of a network which lies between nodes.

Mesh:- It is the shortest close path which is a part of loop. It can't be further divided into other close path. "Every Mesh is a Loop but every Loop is not a Mesh". For e.g.- caghc , abfga & bdefb

 Loop:- It is an any close path of the Network. For e.g.- caghc , abfga , bdefb , cabfghc , abdefga & cabdefghc.

Note:-

Where:-

M :- Number of Mesh

- B:- Number of Branch
- N:- Number of Node

LECTURE-3 Mesh Analysis

Mesh Analysis

- **Step 1:-** Identify the number of Mesh in the circuit.
- **Step 2:-** Assume current in each Mesh (any direction).
- **Step 3:-** Apply KVL in each Mesh and write Mesh equation for each Mesh.
- **Step 4:-** Solve the Mesh equation and find Mesh current.
- Note:-

Number of Mesh Equation = Number of Mesh

Problem:- Find out the current in 2Ω resistance in the given figure using Loop analysis.

Apply KVL in each mesn:-

Mesh (1):-40 - 4 I_1 - 2 (I_1 - I_2) - 30 = 0

 $6I_1 - 2I_2 = 10 \dots \dots \dots \dots \dots \dots (i)$

Mesh (2):-

$$30 - 2(I_2 - I_1) - 3I_2 - 10 = 0$$

$$-2I_1 + 5I_2 = 20 \dots \dots \dots \dots \dots \dots (ii)$$

By solving equation (i) & (ii) we get:-

Mesh Currents:-

$$I_1 = 3.46 A; I_2 = 5.38 A$$

$$\downarrow I_{2\Omega} = I_1 - I_2 = -1.92 A$$
 Answer

Problem:-To find out the Mesh Current in the given circuit.

Apply KVL in each mesh:-

Mesh (1):-60 - 7 I_1 - 8 (I_1 - I_2) = 0

 $15I_1 - 8I_2 + 0I_3 = 60 \dots \dots \dots \dots \dots \dots (i)$

Mesh (2):--12 $I_2 - 10(I_2 - I_3) - 8(I_2 - I_1) = 0$ $8I_1 - 30I_2 + 10I_3 = 0 \dots \dots (ii)$

Mesh (3):-

By solving equation (i), (ii) & (iii) we get:-

Mesh Currents:-

$$I_1 = 4.632 A$$
; $I_2 = 1.185 A$; $I_3 = -0.15 A$

Branch Currents:-

 $I_{7\Omega} = I_1 = 4.632 A$ $I_{8\Omega} = (I_1 - I_2) = 3.447 A \downarrow$ $I_{12\Omega} = I_2 = 1.185 A$ $I_{10\Omega} = (I_2 - I_3) = 1.335A$ $I_{5\Omega} = I_3 = -0.15 A$ $I_{6\Omega} = I_3 = -0.15 A$

Voltage Drop:-

$$V_{5\Omega} = I_{5\Omega} * 5 = I_3 * 5 = -0.15 * 5$$

$$V_{5\Omega} = -0.75 V$$
 Answer

• Power Loss:-

$$P_{5\Omega} = I_{5\Omega}^2 * 5 = (-0.15)^2 * 5 = 0.1125 W$$
 Answer

Problem:- Apply Mesh analysis and obtain the current through 5 Ω resistor in the given circuit.

Apply KVL in each mesh:-

Mesh (1):- $I_1 = 2 A \dots \dots \dots \dots \dots \dots (i)$

Mesh (2):-

$$-5I_2 - 2(I_2 - I_3) - 2(I_2 - I_1) = 0$$

$$9I_2 - 2I_3 = 4 \dots \dots \dots \dots \dots \dots \dots \dots \dots (ii)$$

Mesh (3):-

-100 - 2
$$(I_3 - I_2) - 4I_3 = 0$$

$$2I_2 - 6I_3 = 100 \dots \dots \dots \dots \dots \dots \dots \dots \dots (iii)$$

By solving equation (ii) & (iii) we get:-

Mesh Currents:-

$$I_2 = -3.52 A$$
; $I_3 = -17.84 A$

$$I = I_{5\Omega} = I_2 = -3.52 A$$

Answer

Problem:- Determine current in 4Ω resistor by using Mesh analysis in the circuit shown in figure below.

Mi<u>e</u>t

Solution:-

Apply KVL in each mesh:-Mesh (3):- $I_3 = -2 A \dots (i)$ Mesh (1):- $8 - 5I_1 - 4 (I_1 - I_2) = 0$ $9I_1 - 4I_2 = 8 \dots (ii)$ Mesh (2):-

$$-6I_2 - 2(I_2 - I_3) - 4(I_2 - I_1) = 0$$

$$4I_1 - 12I_2 = 4 \dots \dots$$

By solving equation (ii) & (iii) we get:-

Mesh Currents:-

$$I_1 = 0.869 A$$
; $I_2 = -0.043 A$

$$\downarrow I_{4\Omega} = I_1 - I_2 = 0.1299 A$$

Answer

LECTURE-4 Mesh Analysis

Problem:- Using Mesh analysis find out the current in 20Ω , 40Ω and 15Ω resistor in the given circuit.

Solution:-

Apply KVL in each mesh:-

Mesh (1):-

Mesh (2):-

$$-10-60 (I_2 - I_1) - 20I_2 - 15 (I_2 - I_3) = 0$$

$$-95I_2 + 15I_3 = -20 \dots \dots \dots \dots \dots \dots \dots (ii)$$

Mesh (4):-

Mesh (3):-

$$10-15 (I_3 - I_2) - 40I_3 - 100(I_3 - I_4) = 0$$

$$15I_2 - 155I_3 = 50 \dots \dots \dots \dots \dots \dots \dots (iv)$$

By solving equation (ii) & (iv) we get:-

Mesh Currents:-

$$I_2 = 0.162 A$$
; $I_3 = -0.306 A$

Branch Currents:-

$$I_{20\Omega} = I_2 = 0.162 A$$
 Answer

$$I_{40\Omega} = I_3 = -0.306 A$$
 Answer

$$I_{15\Omega} = (I_2 - I_3) = 0.468A$$
 Answer

Problem:- Calculate $I_1 \& I_2$ by using Mesh analysis.

Apply KVL in each mesh:-

Mesh (3):-

$$I_3 = 10 A$$

Mesh (1):-

$$-20 - 8I_1 - 4(I_1 - 10) - 4(I_1 + I_2) = 0$$

$$16I_1 + 4I_2 = 20 \dots \dots \dots \dots (i)$$

Mesh (2):- $-20 - 8I_2 - 4(I_2 + 10) - 4(I_1 + I_2) = 0$ $4I_1 + 16I_2 = -60 \dots (ii)$

By solving equation (i) & (ii) we get:-

Mesh Currents:-

$$I_1 = 2.33 A$$
; $I_2 = -4.33A$ Answer

Super-Mesh

 If a current source is common between two Mesh then it is called a Super-Mesh. In this case don't directly apply KVL in both Mesh. Apply KVL to the Super-Mesh (Combined Mesh) and apply KCL at common Node to establish the relation between Mesh Current and Current Source.

Problem:- Find out the Mesh Current in the given figure using Mesh analysis.

Branch h-e consists current source between Mesh-1 and Mesh-

2. That's why it is a Super-Mesh:-

Now apply KVL to Super-Mesh (g-h-a-d-e-f-g):-

Apply KVL in Mesh-3 :-

 $5I_1 - 2I_2 - 6 (I_2 - I_3) + 60 = 0$ $5I_1 + 8I_2 - 6I_3 = 60 \dots \dots \dots \dots \dots \dots (i)$

Apply KCL at Node h:-

$$I_1 + 5 = I_2$$

- $I_1 + I_2 = 5 \dots \dots \dots \dots \dots \dots (ii)$

Apply KVL in Mesh-3 :-

$$\begin{array}{l} -50 & -6 \ (I_3 \ -I_2) \ -3I_3 = 0 \\ 6I_2 \ -9I_3 = 50 \ \dots \ \dots \ (iii) \end{array}$$

By solving equation (i),(ii) & (iii) we get:-

Mesh Currents:-

$$I_1 = 0.74 A$$
; $I_2 = 5.74 A$; $I_3 = -1.72 A$ Answer

LECTURE-5 Nodal Analysis

Nodal Analysis

- Step 1:- Take a reference Node at generally ground (V=0).
- Step 2:- Identify number of Nodes.
- **Step 3:-** Assume current in each branch (Any direction).
- **Step 4:-** Apply KCL at each Node and make equations.
- Note:-

Number of Node Equations = (N - 1)

Where N is a Principal Node

- **Step 5:-** Solve equations to find Node voltages.
- Step 6:- Put Node voltages in equations to find out Branch Currents.

Problem:- Using Nodal analysis find out current in 10Ω resistance.

Apply KCL at Node-1:-

 $I_{1} = I_{2} + I_{3}$ $I_{1} - I_{2} - I_{3} = 0$ $\frac{25 - V_{1}}{5} - \frac{V_{1}}{2} - \frac{V_{1} - V_{2}}{10} = 0$ $-8V_{1} + V_{2} = -50 \dots (i)$

Apply KCL at Node-2:-

$$I_{3} = I_{4} + I_{5}$$

$$I_{3} - I_{4} - I_{5} = 0$$

$$\frac{V_{1} - V_{2}}{10} - \frac{V_{2}}{4} - \frac{V_{2} + 50}{2} = 0$$

$$2V_{1} - 17V_{2} = 500 \dots (ii)$$

By solving equation (i) & (ii) we get:-

$$V_1 = 2.61 V$$
; $V_2 = -29.10 V$

$$I_3 = \frac{V_1 - V_2}{10} = 3.171 \, A$$
 Answer

Problem:- Determine Current through 15Ω resistance by Node analysis.

Solution:-

Node (N) = 3 Number of Nodal Equation = (N-1) = 2

MiQt

Apply KCL at Node-1:-

$$I_{1} = I_{2} + I_{3}$$

$$I_{1} - I_{2} - I_{3} = 0$$

$$\frac{10 - V_{1}}{2} - \frac{V_{1}}{10} - \frac{V_{1} - V_{2}}{5} = 0$$

$$8V_{1} - 2V_{2} = 50 \dots (i)$$

Apply KCL at Node-2:-

$$I_{3} + I_{5} = I_{4} + \frac{1}{3}$$

$$I_{3} - I_{4} - \frac{1}{3} + I_{5} = 0$$

$$\frac{V_{1} - V_{2}}{5} - \frac{V_{2}}{15} - \frac{1}{3} + \frac{18 - V_{2}}{3} = 0$$

$$3V_{1} - 9V_{2} = -85$$
(ii)

By solving equation (i) & (ii) we get:-

$$V_1 = 9.39 V; V_2 = 12.57 V$$

$$I_4 = \frac{V_2}{15} = 0.838 A$$
 Answer

LECTURE-6 Nodal Analysis

Problem:- Determine Current through 8Ω resistance by Node analysis.

Node (N) = 3 Number of Nodal Equation = (N-1) = 2

Apply KCL at Node-1:-

 $I_1 = I_2 + I_3$

$$I_1 - I_2 - I_3 = 0$$

$$\frac{10 - 10 - V_1}{5} - \frac{V_1}{2} - \frac{V_1 - V_2}{8} = 0$$

$$33V_1 - 5V_2 = 0$$
(i)

Apply KCL at Node-2:-

$$I_{3} = I_{4} + I_{5}$$

$$I_{3} - I_{4} - I_{5} = 0$$

$$\frac{V_{1} - V_{2}}{8} - \frac{V_{2}}{3} - \frac{V_{2} + 25}{5} = 0$$

$$15V_{1} - 79V_{2} = 600....$$

(ii)

By solving equation (i) & (ii) we get:-

$$V_1 = -1.184 V$$
; $V_2 = -7.819 V$

$$I_{8\Omega} = I_3 = \frac{V_1 - V_2}{8} = 0.829 A$$
 Answer

Problem:- Using Nodal analysis find the current through 1Ω resistance.

Solution:-

MiQt

Apply KCL at Node-1:-

$$I_1 = I_2 + I_3$$

$$I_1 - I_2 - I_3 = 0$$

$$\frac{2-V_1}{2} - \frac{V_1}{3} - \frac{V_1-V_2}{1} = 0$$

$$11V_1 - 6V_2 = 6$$
(i)

Apply KCL at Node-2:-

$$I_{3} + 2 = I_{4}$$

$$I_{3} - I_{4} + 2 = 0$$

$$\frac{V_{1} - V_{2}}{1} - \frac{V_{2}}{5} + 2 = 0$$

$$-5V_{1} + 6V_{2} = 10.....(ii)$$

By solving equation (i) & (ii) we get:-

$$V_1 = 2.66V$$
; $V_2 = 3.88V$

$$I_{1\Omega} = I_3 = \frac{V_1 - V_2}{1} = -1.22 A$$
 Answer

Problem:- Find the current in all resistances using Nodal (AKTU 2022-2023 EVEN SEM.)

Apply KCL at Node-1:-

 $10 = I_1 + I_2 + I_3$

 $10 - I_1 - I_2 - I_3 = 0$

$$10 - \frac{V_1}{2} - \frac{V_1 - V_2}{3} - \frac{V_1 - V_3}{5} = 0$$

$$31V_1 - 10V_2 - 6V_3 = 300$$
(i)

Apply KCL at Node-2:-

 $I_{2} = I_{4} + I_{5}$ $I_{2} - I_{4} - I_{5} = 0$ $\frac{V_{1} - V_{2}}{3} - \frac{V_{2}}{5} - \frac{V_{2} - V_{3}}{1} = 0$ $-5V_{1} + 23V_{2} - 15V_{3} = 0$ (ii)

Apply KCL at Node-3:-

 $I_3 + I_5 = I_6 + 2$ $I_3 + I_5 - I_6 - 2 = 0$ $\frac{V_1 - V_3}{5} + \frac{V_2 - V_3}{1} - \frac{V_3}{2} - 2 = 0$ $2V_1 + 10V_2 - 17V_3 = 20$(iii)

By solving equation (i), (ii) & (iii) we get:-

$$V_1 = 11.58 V$$
; $V_2 = 4.28 V$; $V_3 = 2.70 V$

$$I_{3} = \frac{V_{1} - V_{3}}{5} = 1.776 A$$

$$I_{4} = \frac{V_{2}}{5} = 0.856 A$$

$$I_{2} = \frac{V_{1} - V_{2}}{3} = 2.43 A$$

$$I_{5} = \frac{V_{2} - V_{3}}{1} = 1.58 A$$

$$I_{1} = \frac{V_{1}}{2} = 5.79 A$$

$$I_{6} = \frac{V_{3}}{2} = 1.35 A$$
Answer

Problems Mesh analysis & Nodal Analysis

Mesh Analysis

Problem:1 Find the current I in figure given below using mesh analysis.

Ans:

Super-mesh

Problem: 2 Find the current in all branches by using mesh analysis.

Super-node

Problem: 3 Calculate the resistive branch current by using nodal analysis.

