Steady State Analysis of AC Circuits

miet

UNIT-II

Lecture 7

$\because \because:$
 $: 008$

AC Quantity

- Changes periodically both in magnitude and direction with respect to time
- Alternates between two values (+ve and -ve maximum)
- Analogous example - Pendulum action.

Sinusoidal AC

- The nature of transition between + ve and -ve maximum is sinusoidal
- If A is at higher potential- +ve half cycle
- If B is at higher potential- -ve half cycle

Instantaneous Value

- The discrete value at any instant.
- The instantaneous value changes at every instant in a sinusoidal function
- Instantaneous value is given as
- $v(\theta)=V_{0} \sin \theta$
- $v(\omega t)=V_{0} \sin \omega t$

Waveform

- A graph of instantaneous values plotted against time or angular displacement.

Cycle

- Set of values which repeat itself again and again is called one cycle

Frequency

- Number of cycles per second is called frequency
- Unit of measurement for frequency is Hertz or cycles/second
- 50 Hz frequency means the signal repeats 50 cycles in each second

Time Period

- Total time consumed during one complete cycle is called time period
- For a 50 Hz frequency signal Time Period will be 0.02 seconds
- $T=1 / f$

Amplitude

- The displacement across yaxis either up to maximum positive or maximum negative is called amplitude.
- For a sinusoidal signal, if amplitude is A , then mathematically, A is multiplied with a sin function of amplitude 1.

- $f(x)=A * \sin x$

Angular Frequency

- Also called angular velocity
- The angular displacement per second
- Measured either in degrees per second or radians per second
- Total displacement in one rotation $=2 \pi$ radians
- Time period $=T$ seconds
- Then speed of rotating phasor is given
- $\omega=\frac{2 \pi}{T}=2 \pi f$ radians per second

Phase

- Phase is defined as the fraction of time by which any signal is shifted on x -axis from origin.
- Phase gives the comparison of any signal in the context of time with a reference signal or origin.
- Something can be in phase with reference or if out of phase, it can be leading or lagging.
- When compared to origin, a signal
 is said to be with zero phase, +ve phase or -ve phase respectively.

Problem

- An alternating voltage is given by

$$
\text { - } v=141.3 \sin 314 t
$$

- Find out
- Frequency
- Amplitude
- Instantaneous value at $\mathrm{t}=3$ milliseconds
- Time taken for the voltage to reach 100 V just after
- Origin
- First maxima

Solution

- Given
- $v=141.3 \sin 314 t$
- Frequency
- $\omega=314 \mathrm{rad} / \mathrm{sec}$
- $f=\omega / 2 \pi=\frac{314}{2 * 3.14}=50 \operatorname{Hertz}(\mathrm{~Hz})$
- Amplitude
- From given data
- $\quad V_{m}=141.3$ Volts
- Instant. value at $\mathrm{t}=3 \mathrm{~ms}$ can be known after putting value of t in the given equation
- $v=141.3 \sin \left(314 * 3 * 10^{-3}\right)$
- $v=114.4$ Volts
- Time taken after origin to 100 V
- $100=141.3 \sin 314 t$
- $\sin 314 t=\frac{100}{141.3}=0.707714$
- $t=\frac{\sin ^{-1} 0.707714}{314}=\frac{0.7853 \text { radians }}{314 \mathrm{rad} / \mathrm{sec}}$
- $\quad t=2.5 \mathrm{~ms}$
- Time taken after first maxima to 100V
- $100=141.3 \sin (314 t+\pi / 2)$
- $100=141.3 \cos 314 t$
- $t=\frac{1}{314} \cos ^{-1}\left(\frac{100}{141.3}\right)=\frac{0.7853 \text { radians }}{314 \mathrm{rad} / \mathrm{sec}}$
- $\quad t=2.5 \mathrm{~ms}$

Lecture 8 \& 9

Average Value

- Average or Mean of all instantaneous values over a time period
- Represents actual DC content in the signal

$$
\text { - } V_{\text {avg }}=\frac{1}{T} \int_{0}^{T} v(t) d(t)
$$

- For pure AC signals, $V_{\text {avg }}=0$, that is DC content in a pure AC wave is zero for a single time period.

- Area under the curve per unit base length also gives the average value for the curve

RMS Value

- The signal is squared before taking mean of it to make every instantaneous value positive (i.e. -ve value to +ve) and a square root to counter the square.
- RMS value is that DC equivalent value of an AC quantity which dissipates the same power in a common resistance.
- Represents the equivalent DC value, hence also called effective DC value
- $I_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) d(t)}$
- $I_{r m s}=\sqrt{\frac{1}{\text { base }} \int_{0}^{2 \pi} i^{2}(\theta) d(\theta)}$

Form Factor

- It is defined as the ratio of RMS value to the average value.
- It describes the shape of any waveform.
- It is expressed as,
- $K_{f}=\frac{V_{r m s}}{V_{\text {avg }}}$

Peak Factor

- It is defined as the ratio of maximum value to the RMS value.
- It gives an idea for the peak value per unit of RMS value.
- It is expressed as,
- $K_{p}=\frac{V_{\max }}{V_{r m s}}$

Pure Sinusoidal Wave: Average

- For a pure sinusoidal wave,
- Function, $v(\omega t)=V_{0} \sin \omega t \quad \operatorname{emf}(V)$
- For the average of complete cycle
- Base $=2 \pi$,
- Limits $=0-2 \pi$
- $V_{a v g}=\frac{1}{2 \pi} \int_{0}^{2 \pi} v(\omega t) d(\omega t)$
- $V_{a v g}=\frac{1}{2 \pi} \int_{0}^{2 \pi} V_{0} \sin \omega t d(\omega t)$

Pure Sinusoidal Wave: Average cont...

- $V_{a v g}=\frac{V_{0}}{2 \pi} \int_{0}^{2 \pi} \sin \omega t d(\omega t)$
- As,
- $\int_{0}^{2 \pi} \sin \omega t d(\omega t)=$
$[-\cos \omega t]_{0}^{2 \pi}=0$
- Hence,
- $V_{a v g}=0$

Pure Sinusoidal Wave: Average cont...

- For a pure sinusoidal wave,
- Function, $v(\omega t)=V_{0} \sin \omega t$
- For the average of half cycle
- Base $=\pi$,
- Limits $=0-\pi$
- $V_{a v g}=\frac{1}{\pi} \int_{0}^{\pi} v(\omega t) d(\omega t)$
- $V_{a v g}=\frac{1}{\pi} \int_{0}^{\pi} V_{0} \sin \omega t d(\omega t)$

Pure Sinusoidal Wave: Average cont...

- $V_{a v g}=\frac{V_{0}}{\pi} \int_{0}^{\pi} \sin \omega t d(\omega t)$
- As,
- $\int_{0}^{\pi} \sin \omega t d(\omega t)=$
$[-\cos \omega t]_{0}^{\pi}=2$
- Hence,
- $V_{\text {avg }}=\frac{2 V_{0}}{\pi}$

Pure Sinusoidal Wave: RMS

- For a pure sinusoidal wave,
- Function, $v(\omega t)=V_{0} \sin \omega t$

Pure Sinusoidal Wave: RMS cont...

- $V_{r m s}=\sqrt{\frac{V_{0}^{2}}{2 \pi} \int_{0}^{2 \pi} \sin ^{2}(\omega t) d(\omega t)}$
- As,
- $\int_{0}^{2 \pi} \sin ^{2}(\omega t) d(\omega t)=$ $\int_{0}^{2 \pi} \frac{1}{2}(1-\cos 2 \omega t) d(\omega t)$
- $=\frac{1}{2}\left[\omega t-\frac{\sin 2 \omega t}{2}\right]_{0}^{2 \pi}=\pi$
- Hence,
- $V_{r m s}=\frac{V_{0}}{\sqrt{2}}$

Half Wave Rectifier: Average

- Function,
- $v(\omega t)=\begin{gathered}V_{0} \sin \omega t \\ 0\end{gathered}\left\{\begin{array}{c}0-\pi \\ \pi-2 \pi\end{array}\right.$
- Base $=2 \pi$,
- $V_{\text {avg }}=\frac{1}{2 \pi} \int_{0}^{\pi} v(\omega t) d(\omega t)$
- $V_{\text {avg }}=\frac{1}{2 \pi} \int_{0}^{\pi} V_{0} \sin \omega t d(\omega t)$

- $\int_{0}^{\pi} \sin \omega t d(\omega t)=[-\cos \omega t]_{0}^{\pi}=2$
- $V_{\text {avg }}=\frac{V_{0}}{\pi}$

Half Wave Rectifier: RMS

- Function,
- $v(\omega t)=\begin{gathered}V_{0} \sin \omega t \\ 0\end{gathered}\left\{\begin{array}{c}0-\pi \\ \pi-2 \pi\end{array}\right.$
- Base $=2 \pi$,
- $V_{r m s}=\sqrt{\frac{V_{0}^{2}}{2 \pi} \int_{0}^{\pi} \sin ^{2}(\omega t) d(\omega t)}$
- $\int_{0}^{\pi} \sin ^{2}(\omega t) d(\omega t)=$

$$
\int_{0}^{\pi} \frac{1}{2}(1-\cos 2 \omega t) d(\omega t)
$$

- $=\frac{1}{2}\left[\omega t-\frac{\sin 2 \omega t}{2}\right]_{0}^{\pi}=\pi$
- $V_{r m s}=\frac{V_{0}}{2}$

Full Wave Rectifier: Average

- Function,
- $v(\omega t)=V_{0} \sin \omega t\{0-\pi$
- Base $=\pi$,
- $V_{a v g}=\frac{1}{\pi} \int_{0}^{\pi} v(\omega t) d(\omega t)$
- $V_{\text {avg }}=\frac{1}{\pi} \int_{0}^{\pi} V_{0} \sin \omega t d(\omega t)$
- $\int_{0}^{\pi} \sin \omega t d(\omega t)=[-\cos \omega t]_{0}^{\pi}=2$
- $V_{\text {avg }}=\frac{2 V_{0}}{\pi}$

Full Wave Rectifier: RMS

- Function,
- $v(\omega t)=V_{0} \sin \omega t\{0-\pi$
- Base $=\pi$,
- $V_{r m s}=\sqrt{\frac{V_{0}^{2}}{\pi} \int_{0}^{\pi} \sin ^{2}(\omega t) d(\omega t)}$
- $\int_{0}^{\pi} \sin ^{2}(\omega t) d(\omega t)=$
$\int_{0}^{\pi} \frac{1}{2}(1-\cos 2 \omega t) d(\omega t)$
- $=\frac{1}{2}\left[\omega t-\frac{\sin 2 \omega t}{2}\right]_{0}^{\pi}=\pi$
- $V_{r m s}=\frac{V_{0}}{\sqrt{2}}$

Square Wave: Average

- Function,
- $v(\omega t)={ }_{-V_{0}}^{+V_{0}}\left\{\begin{array}{l}0-T / 2 \\ T / 2-T\end{array}\right.$
- Base $=$ Time period $=T$,
- $V_{\text {avg }}=\frac{1}{T} \int_{0}^{T} v(t) d(t)$
- Average for full cycle is zero.
- For half cycle,
- $\quad V_{\text {avg }}=\frac{V_{0}}{T / 2}\left[\int_{0}^{T / 2} d(t)\right]$
- $V_{\text {avg }}=V_{0}$

Square Wave: RMS

- Function,
- $v(\omega t)={ }_{-V_{0}}^{+V_{0}}\left\{\begin{array}{l}0-T / 2 \\ T / 2-T\end{array}\right.$
- Base $=$ Time period $=T$,
- $V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d(t)}$
- $V_{r m s}=$

$$
\sqrt{\frac{V_{0}{ }^{2}}{T}\left[\int_{0}^{T / 2} d(t)+\int_{T / 2}^{T} d(t)\right]}
$$

- $V_{r m s}=V_{0}$

Sawtooth Wave: AVERAGE

- Function for straight line is
- $y=m x+C$
- Where y is a function of x of slope m . C is the point on y -axis where x is zero.
- $m=\frac{d y}{d x}$, and here $C=0$
- Hence,
- $v(t)=\frac{V}{T} t$ for $0-\mathrm{T}$
- Base $=$ Time period $=T$,

$$
\begin{aligned}
& . \quad V_{\text {avg }}=\frac{1}{T} \int_{0}^{T} v(t) d(t) \\
& =\quad V_{\text {avg }}=\frac{1}{T} \int_{0}^{T} \frac{V}{T} t d(t)
\end{aligned}
$$

- $V_{\text {avg }}=\frac{V}{T^{2}}\left[\frac{t^{2}}{2}\right]_{0}^{T}$
- $V_{\text {avg }}=\frac{V}{2}$

Triangular Wave: RMS

- $V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d(t)}$
- $V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T}\left(\frac{V}{T} t\right)^{2} d(t)}$
- $V_{r m s}=\sqrt{\frac{V^{2}}{T^{3}}\left[\frac{t^{3}}{3}\right]_{0}^{T}}$
- $V_{r m s}=\frac{V}{\sqrt{3}}$

Problem

time

- Find
- $V_{\text {avg }}$
- $\mathrm{V}_{\mathrm{rms}}$
- Form factor and Peak factor

Solution

- Given
- $\mathrm{T}=0.3 \mathrm{sec}$
- $v(t)=\left\{\begin{array}{c}30 \mathrm{~V}, 0<t<0.1 \\ 0,0.1<x<0.3\end{array}\right.$
- Average value is given as
- $V_{\text {avg }}=\frac{1}{T} \int_{0}^{T} v(t) d(t)$
- $V_{\text {avg }}=\frac{1}{0.3}\left[\int_{0}^{0.1} 30 . d t+\int_{0.1}^{0.3} 0 . d t\right]$
- $V_{\text {avg }}=\frac{30}{0.3}[t]_{0}^{0.1}=100 * 0.1$
- $V_{\text {avg }}=10$ Volts
- RMS value is given as
- $V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d(t)}$
- $\quad V_{r m s}=\sqrt{\frac{1}{0.3}\left[\int_{0}^{0.1} 30^{2} d(t)+\int_{0.1}^{0.3} 0 d t\right]}$
- $V_{r m s}=\sqrt{\frac{900}{0.3}[t]_{0}^{0.1}}=\sqrt{300}=17.32 \mathrm{~V}$
- Form factor
* $K_{f}=\frac{17.32}{10}=1.732$
- Peak factor
- $\quad K_{p}=\frac{30}{17.32}=1.732$

Problem

- Find
- $V_{\text {avg }}$
- $V_{\text {rms }}$
- Form factor and Peak factor

Solution

- Given
- $\mathrm{T}=4 \mathrm{sec}$
- For $t=0-2$ sec, function is given as
- $v(t)=m t+C$
- $m=\frac{10}{1}=10$, and $C=0$
- $v(t)=\left\{\begin{array}{l}10 t, 0<t<2 \\ -20,2<x<4\end{array}\right.$
- Average value is given as
- $V_{\text {avg }}=\frac{1}{T} \int_{0}^{T} v(t) d(t)$
- $=\frac{1}{4}\left[\int_{0}^{2} 10 t(d t)+\int_{2}^{4}(-20) d(t)\right]$
- $\left.V_{\text {avg }}=\frac{10}{4} t_{2}^{2}\right]_{0}^{2}-\frac{20}{4}[t]_{2}^{4}=5-10$
- $V_{\text {avg }}=-5$ Volts
- RMS value is given as

$$
\begin{aligned}
& . V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d(t)} \\
& = \\
& =\sqrt{\frac{1}{4}\left[\int_{0}^{2}(10 t)^{2} d(t)+\int_{2}^{4}(-20)^{2} d(t)\right]} \\
& . \\
& V_{r m s}=\sqrt{\frac{100}{4}\left[\frac{t^{3}}{3}\right]_{0}^{2}+\frac{400}{4}[t]_{2}^{4}} \\
& . \\
& V_{r m s}=\sqrt{266.66}=16.32 \mathrm{~V}
\end{aligned}
$$

- Form factor
- $K_{f}=\frac{16.32}{5}=3.26$
- Peak factor
- $\quad K_{p}=\frac{20}{16.32}=1.22$

Problem

- Find
- $I_{\text {avg }}$
- $\mathrm{I}_{\text {rms }}$
- Form factor and Peak factor

Solution

- Given
- $\mathrm{T}=5 \mathrm{sec}$
- $i(t)=m t+C$
- Here,
- $m=\frac{5}{5}=1$, and $C=0$
- Hence,
- $\quad i(t)=t, 0<t<5$
- Average value is given as
- $\quad I_{\text {avg }}=\frac{1}{T} \int_{0}^{T} v(t) d(t)$
- $I_{\text {avg }}=\frac{1}{5} \int_{0}^{5} t d t$
- $\quad I_{\text {avg }}=\frac{1}{5}\left[\frac{t^{2}}{2}\right]_{0}^{5}$
- $\quad I_{\text {avg }}=2.5 \mathrm{Volts}$
- RMS value is given as
- $I_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d(t)}$
- $I_{r m s}=\sqrt{\frac{1}{5} \int_{0}^{5}(t)^{2} d(t)}$
- $\left.I_{r m s}=\sqrt{\frac{1}{5}\left[\frac{t^{3}}{3}\right.}\right]_{0}^{5}=\sqrt{\frac{125}{5 * 3}}$
- $I_{r m s}=\sqrt{8.33}=2.88 \mathrm{~V}$
- Form factor
- $\quad K_{f}=\frac{2.88}{2.5}=1.152$
- Peak factor
- $K_{p}=\frac{5}{2.88}=1.733$

Problem

- Find
- $V_{\text {avg }}$
- $\mathrm{V}_{\text {rms }}$
- Form factor and Peak factor

Solution

- Average value for complete cycle is zero, for half cycle is given as
- $\quad V_{a v g}=\frac{1}{2} \int_{0}^{2} v(t) d(t)$
- Given

$$
\begin{aligned}
& =\quad \mathrm{v}(t)=\left\{\begin{aligned}
10 t, 0<t<1 \\
-10 t+20,1<t<2
\end{aligned}\right. \\
& =V_{\text {avg }}= \\
& \frac{1}{2}\left[\int_{0}^{1} 10 t d t+\int_{1}^{2}(-10 t+20) d t\right] \\
& = \\
& V_{\text {avg }}= \\
& \frac{10}{2}\left[\frac{t^{2}}{2}\right]_{0}^{1}+\frac{1}{2}\left[-10 \frac{t^{2}}{2}+20 t\right]_{1}^{2} \\
& = \\
& V_{\text {avg }}=5 \mathrm{~V}
\end{aligned}
$$

- RMS value is given as

$$
\begin{aligned}
& \quad V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d(t)} \\
& . \quad V_{r m s}=\sqrt{\frac{2}{T} \int_{0}^{T / 2} v^{2}(t) d(t)}
\end{aligned}
$$

- $=\sqrt{\frac{2}{4}\left[\int_{0}^{1}(10 t)^{2} d(t)+\int_{1}^{2}(-10 t+20)^{2} d(t)\right]}$
- $V_{r m s}=$

$$
\begin{gathered}
\sqrt{\frac{100}{2}\left[\frac{t^{3}}{3}\right]_{0}^{1}+\frac{1}{2}\left[100 \frac{t^{3}}{3}-400 t+400\right]_{2}^{4}} \\
V_{r m s}=\sqrt{33.33}=5.773 \mathrm{~V}
\end{gathered}
$$

- Form factor
- $\quad K_{f}=\frac{5.773}{5}=1.154$
- Peak factor

$$
\text { - } \quad K_{p}=\frac{10}{5.773}=1.732
$$

Problem

- Find
- $\mathrm{V}_{\text {avg }}$
- $\mathrm{V}_{\mathrm{rms}}$
- Form factor and Peak factor

Solution

- Given
- $\mathrm{T}=2 \mathrm{sec}$
- $v(t)=\left\{\begin{array}{c}50 t, 0<t<1 \\ 50,1<x<2\end{array}\right.$
- Average value is given as
- $V_{\text {avg }}=\frac{1}{T} \int_{0}^{T} v(t) d(t)$
- $=\frac{1}{2}\left[\int_{0}^{1} 50 t(d t)+\int_{1}^{2} 50 d(t)\right]$
- $V_{\text {avg }}=\frac{50}{2}\left[\frac{t^{2}}{2}\right]_{0}^{1}+\frac{50}{2}[t]_{1}^{2}=12.5+$ 25
- $V_{\text {avg }}=37.5 \mathrm{Volts}$
- RMS value is given as

$$
\begin{aligned}
& . \quad V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d(t)} \\
& = \\
& =\sqrt{\frac{1}{2}\left[\int_{0}^{1}(50 t)^{2} d(t)+\int_{1}^{2} 50^{2} d(t)\right]} \\
& . \\
& \left.V_{r m s}=\sqrt{\frac{2500}{2}\left[\frac{t^{3}}{3}\right.}\right]_{0}^{1}+\frac{2500}{2}[t]_{1}^{2} \\
& \Rightarrow \\
& V_{r m s}=\sqrt{1664.64}=40.8 \mathrm{~V}
\end{aligned}
$$

- Form factor
- $K_{f}=\frac{40.8}{37.5}=1.088$
- Peak factor
- $K_{p}=\frac{50}{40.8}=1.225$

Lecture 10

Phasor Theory: Basics

Rectangular Form

Polar Form

Polar to Rectangular

- A phasor is given in polar form $r \angle \theta$
- In rectangular form (x, y) is given as
- $x=r \cos \theta$
- $y=r \sin \theta$

Rectangular to Polar

- A phasor is given in rectangular form (x, y)
- In polar form $r \angle \theta$ is given as
- $r=\sqrt{x^{2}+y^{2}}$
- $\theta=\tan ^{-1}\left(\frac{y}{x}\right)$

Zero, Positive, Negative Phase

Phase Difference

Phase shift $=180$ degrees
A and B waveforms are mirror-images of each other

Phase shift $=90$ degrees
A is ahead of B
(A "leads" B)

Phase shift = 90 degrees
B is ahead of A
(B "leads" A)

Phase shift $=0$ degrees
A and B waveforms are in perfect step with each other

Practice

- Let
- $R=8 \Omega$
- $\quad X=j 6 \Omega$
- Write polar and rectangular form for this RL combination
- Rectangular form
- $Z=8+j 6 \Omega$
- Polar form
- $Z=10 \angle 36.86$

Practice

- Find the equivalent impedance

Problem

- Draw the phasor diagram for the following voltages and find the RMS value of the resultant voltage.
- $v_{1}=100 \sin 500 t$
- $v_{2}=200 \sin (500 t+\pi / 3)$
- $v_{3}=-50 \cos 500 t$
- $v_{4}=150 \sin (500 t-\pi / 4)$

Solution

- In phasor form all voltages are given as
- $v_{1}=100 \sin 500 t=\frac{100}{\sqrt{2}} \angle 0$
- $v_{2}=200 \sin (500 t+\pi / 3)=\frac{200}{\sqrt{2}} \angle 60$
- $v_{3}=-50 \cos 500 t=$
$-50 \sin (90-\omega t)=50 \sin (\omega t-90)=$ $\frac{50}{\sqrt{2}} \angle-90$
- $v_{4}=150 \sin (500 t-\pi / 4)=\frac{150}{\sqrt{2}} \angle-45$
- Resultant voltage is given as
- $\vec{v}=\overrightarrow{v_{1}}+\overrightarrow{v_{2}}+\overrightarrow{v_{3}}+\overrightarrow{v_{4}}=$

- $\vec{v}=70.71+j 0+70.71+j 122.47+0-$ $j 35.35+75-j 75$
- $\vec{v}=216.4212+j 12.1184$
- $\vec{v}=216.76 \angle 3.205^{\circ}$
- $v=306.54 \sin \left(500 t+3.205^{\circ}\right)$

Lecture 11

Pure R Circuit

- $v=V_{0} \sin \omega t$
- $Z=R$
- $i=\frac{v}{R}=$
$\frac{V_{0}}{R} \sin \omega t=I_{0} \sin \omega t$

Pure R Circuit: $v-i$ Relationship

$i_{(t)}=\frac{V_{(t)}}{R}$ (Ohms Law)
$Z=R$

Pure R Circuit: Power-Graphical Approach

- From $0-\pi$
- $v=+v e$
- $i=+v e$
- $p=v * i=+v e$
- From $\pi-2 \pi$
- $v=-v e$
- $i=-v e$
- $p=v * i=+v e$

Pure R Circuit: Power-Mathematical Approach

- Power at any instant is given as
- $p(\omega t)=v(\omega t) * i(\omega t)$
- $p(\omega t)=V_{0} \sin \omega t * I_{0} \sin \omega t=V_{0} I_{0}(\sin \omega t)^{2}$
- $p(\omega t)=V_{0} I_{0}(1-\cos 2 \omega t) / 2$
- Average Power is given as
- $P_{a v g}=\frac{1}{\pi} \int_{0}^{\pi} p(\omega t) d(\omega t)$
- $P_{a v g}=\frac{V_{0} I_{0}}{2 \pi} \int_{0}^{\pi}(1-\cos 2 \omega t) d(\omega t)$
- $P_{\text {avg }}=\frac{V_{0} I_{0}}{2 \pi}[\omega t-\sin 2 \omega t]_{0}^{\pi}$
- $\quad P_{a v g}=\frac{V_{0} I_{0}}{2}$
- $P_{\text {avg }}=V_{r m s} I_{r m s}$

Pure R Circuit: Conclusions

- $Z=R$
- v and i are in same phase
- $\emptyset=0$
- $\cos \emptyset=1$
- Power transfer takes place always from source to load ($p=+v e$, for all t)
- frequency(power) $=2$ frequency(voltage,current)

Pure L Circuit

- $N \emptyset=L i$
- $N \frac{d}{d t} \varnothing=L \frac{d}{d t} i$
- $e_{L}=L \frac{d}{d t} i$
- $i=\frac{1}{L} \int e_{L} d t=\frac{1}{L} \int V_{m} \sin \omega t d t$
- $i=\frac{V_{m}}{\omega L}[-\cos \omega t]=I_{m} \sin (\omega t-\pi / 2)$
- $z=0+j X_{L}=j \omega L=\omega L \angle 90^{\circ}$

Pure L Circuit: $v-i$ Relationship IIIIt

- Inductor current lags inductor voltage by 90 degrees

Pure L Circuit: Power

- From $0-\pi / 2$

$$
\begin{array}{ll}
& v=+v e \\
\cdot & i=-v e \\
\quad & p=v * i=-v e
\end{array}
$$

- From $\pi / 2-\pi$
- $v=+v e$
- $\quad i=+v e$
- $\quad p=v * i=+v e$
- From $\pi-3 \pi / 2$
- $v=-v e$
- $\quad i=+v e$
- $\quad p=v * i=-v e$
- From $3 \pi / 2-2 \pi$
- $v=-v e$
- $i=-v e$
- $\quad p=v * i=+v e$

Pure L Circuit: Power

- Power at any instant is given as
- $p(\omega t)=v(\omega t) * i(\omega t)$
- $p(\omega t)=V_{0} \sin \omega t * I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)=V_{0} I_{0} \sin \omega t \sin \left(\omega t-\frac{\pi}{2}\right)$
- $p(\omega t)=V_{0} I_{0} \sin \omega t \cos \omega t=\frac{V_{0} I_{0}}{2} \sin 2 \omega t$
- Average Power is given as
- $P_{\text {avg }}=\frac{1}{\pi} \int_{0}^{\pi} p(\omega t) d(\omega t)$
- $P_{\text {avg }}=\frac{V_{0} I_{0}}{2 \pi} \int_{0}^{\pi} \sin 2 \omega t d(\omega t)$
- $P_{\text {avg }}=\frac{V_{0} I_{0}}{2 \pi}\left[\frac{-\cos 2 \omega t}{2}\right] \pi=0$

Pure L Circuit: Conclusions

- $Z=j X_{L}$
- ilags v by 90°
- $\varnothing=90^{\circ}(\pi / 2)$
- $\cos \emptyset=0$
- Power transfer takes place from source to load $(p=+v e)$ for half cycle, and from load to source ($p=-v e$) for next half cycle of power
- $P_{\text {avg }}=0$
- frequency $(p)=2$ frequency (v, i)

Pure C Circuit

- $q=C v$
- $\frac{d}{d t} q=C \frac{d}{d t} v$
- $i=C \frac{d}{d t} v=C \frac{d}{d t}\left(V_{0} \sin \omega t\right)$
- $i=\omega C V_{0} \cos \omega t$
- $i=\omega C V_{0} \sin \left(\omega t+\frac{\pi}{2}\right)$
- $I_{0}=\frac{V_{0}}{X_{C}}$
- $X_{C}=1 / \omega C$

Pure C Circuit

- i leads v by 90°

$\stackrel{\bullet \bullet}{\bullet \bullet \bullet}$

Pure C Circuit: Power

- From $0-\pi / 2$

$$
\begin{array}{ll}
* & v=+v e \\
* & i=+v e \\
* & p=v * i=+v e
\end{array}
$$

- From $\pi / 2-\pi$
- $v=+v e$
- $\quad i=-v e$
- $\quad p=v * i=-v e$
- From $\pi-3 \pi / 2$
- $v=-v e$
- $\quad i=-v e$
- $\quad p=v * i=+v e$
- From $3 \pi / 2-2 \pi$
- $v=-v e$
- $\quad i=+v e$
- $\quad p=v * i=-v e$

Pure C Circuit: Power

- Power at any instant is given as
- $p=v * i$
- $p=V_{0} \sin \omega t * I_{0} \sin \left(\omega t+\frac{\pi}{2}\right)=V_{0} I_{0} \sin \omega t \sin \left(\omega t+\frac{\pi}{2}\right)$
- $p=V_{0} I_{0} \sin \omega t \cos \omega t=\frac{V_{0} I_{0}}{2} \sin 2 \omega t$
- Average Power is given as
- $P_{\text {avg }}=\frac{1}{T} \int_{0}^{T} p(\omega t) d(\omega t)$
- $P_{\text {avg }}=\frac{V_{0} I_{0}}{2 \pi} \int_{0}^{\pi} \sin 2 \omega t d(\omega t)$
- $P_{\text {avg }}=\frac{V_{0} I_{0}}{2 \pi}\left[\frac{-\cos 2 \omega t}{2}\right]_{0}^{\pi}=0$

Pure C Circuit: Conclusions

- $Z=-j X_{c}$
- ileads v by 90°
- $\varnothing=90^{\circ}(\pi / 2)$
- $\cos \emptyset=0$
- Power transfer takes place from source to load $(p=+v e)$ for half cycle, and from load to source ($p=-v e$) for next half cycle of power
- $P_{\text {avg }}=0$
- $f(p)=2 f(v, i)$

Lecture 12 \& 13

RL Circuit

- $v=V_{0} \sin \omega t$

RL Circuit: v - i phasor

- $i_{R}=i_{L}=i$
- i is in phase with v_{R}
- ilags v_{L} by 90°

RL Circuit: Voltage Triangle

$$
\begin{array}{ll}
& \vec{v}=\overrightarrow{v_{R}}+\overrightarrow{v_{L}} \\
& v^{2}=v_{R}{ }^{2}+v_{L}{ }^{2} \\
& (i Z)^{2}=(i R)^{2}+\left(i X_{L}\right)^{2} \\
Z^{2}=R^{2}+X_{L}{ }^{2}
\end{array}
$$

RL Circuit: Impedance Triangle

- Impedance of the Circuit
- $Z=R+j X_{L}$
- $Z=\sqrt{R^{2}+X_{L}{ }^{2}}$
- $\varnothing=\tan ^{-1} \frac{X_{L}}{R}$
- Current in the Circuit
- $i=v /\left(R+j X_{L}\right)=\frac{v}{Z \angle \phi}$
- $i=\frac{v}{Z} \angle-\phi$
- $i(\omega t)=I_{0} \sin (\omega t-\phi)$

RL Circuit: Power

- $p=v * i$
- $p=V_{0} \sin \omega t * I_{0} \sin (\omega t-\emptyset)$
- $p=I_{0} V_{0}[\sin \omega t \sin (\omega t-\emptyset)]$
- $p=\frac{V_{0} I_{0}}{2}[\cos \emptyset-\cos (2 \omega t-\emptyset)]$
- $p=\frac{V_{0} I_{0}}{2} \cos \emptyset-\frac{V_{0} I_{0}}{2} \cos (2 \omega t-\emptyset)$
- $\quad P_{\text {avg }}=\frac{1}{\pi} \int_{0}^{\pi} p(\omega t) d(\omega t)$
- $P_{\text {avg }}=\frac{1}{\pi} \int_{0}^{\pi}\left[\frac{V_{0} I_{0}}{2} \cos \emptyset-\frac{V_{0} I_{0}}{2} \cos (2 \omega t-\emptyset)\right] d(\omega t)$

RL Circuit: Power cont...

- $\int_{0}^{\pi} \cos (2 \omega t-\emptyset) d(\omega t)=\int_{0}^{\pi}[\cos 2 \omega t \cos \emptyset+\sin 2 \omega t \sin \emptyset] d(\omega t)=0$
- $P_{\text {avg }}=\frac{1}{\pi} \int_{0}^{\pi} p(\omega t) d(\omega t)=\frac{1}{\pi} \int_{0}^{\pi} \frac{V_{0} I_{0}}{2} \cos \emptyset d(\omega t)=\frac{V_{0} I_{0}}{2 \pi} \cos \emptyset \int_{0}^{\pi} d(\omega t)$
- $P_{\text {avg }}=\frac{V_{0} I_{0}}{2} \cos \emptyset$
- $P_{\text {avg }}=V_{r m s} I_{r m s} \cos \emptyset$

RC Circuit

- $v=V_{0} \sin \omega t$

RC Circuit: $v-i$ phasor

- $i_{R}=i_{c}=i$
- i is in phase with v_{R}
- i leads v_{c} by 90°

RC Circuit: Voltage Triangle

- $\vec{v}=\overrightarrow{v_{R}}+\overrightarrow{v_{C}}$
- $v^{2}=v_{R}{ }^{2}+v_{C}{ }^{2}$
- $(i Z)^{2}=(i R)^{2}+\left(i X_{C}\right)^{2}$
- $Z^{2}=R^{2}+X_{C}{ }^{2}$

RC Circuit: Impedance Triangle

- Impedance of the Circuit
- $Z=R-j X_{c}$
- $Z=\sqrt{R^{2}+X_{c}{ }^{2}}$
- $\varnothing=\tan ^{-1}\left(\frac{-X_{c}}{R}\right)$
- Current in the Circuit
- $i=v /\left(R-j X_{C}\right)=\frac{v}{z \angle-\phi}$
- $i=\frac{v}{Z} \angle \phi$

- $i(\omega t)=I_{0} \sin (\omega t+\phi)$

RC Circuit: Power

- $p=v * i$
- $p=V_{0} \sin \omega t * I_{0} \sin (\omega t+\emptyset)$
- $p=V_{0} I_{0}[\sin \omega t \sin (\omega t+\emptyset)]$
- $p=\frac{V_{0} I_{0}}{2}[\cos (-\varnothing)-\cos (2 \omega t+\varnothing)]$
- $p=\frac{V_{0} I_{0}}{2} \cos \emptyset-\frac{V_{0} I_{0}}{2} \cos (2 \omega t+\varnothing)$
- $\quad P_{\text {avg }}=\frac{1}{\pi} \int_{0}^{\pi} p(\omega t) d(\omega t)$
- $P_{\text {avg }}=\frac{1}{\pi} \int_{0}^{\pi}\left[\frac{V_{0} I_{0}}{2} \cos \emptyset-\frac{V_{0} I_{0}}{2} \cos (2 \omega t+\emptyset)\right] d(\omega t)$

RC Circuit: Power cont...

- $\int_{0}^{\pi} \cos (2 \omega t+\emptyset) d(\omega t)=\int_{0}^{\pi}[\cos 2 \omega t \cos \emptyset-\sin 2 \omega t \sin \emptyset] d(\omega t)=0$
- $P_{\text {avg }}=\frac{1}{\pi} \int_{0}^{\pi} p(\omega t) d(\omega t)=\frac{1}{\pi} \int_{0}^{\pi} \frac{V_{0} I_{0}}{2} \cos \emptyset d(\omega t)=\frac{V_{0} I_{0}}{2 \pi} \cos \emptyset \int_{0}^{\pi} d(\omega t)$
- $\quad P_{\text {avg }}=\frac{V_{0} I_{0}}{2} \cos \emptyset$
- $P_{\text {avg }}=V_{r m s} I_{r m s} \cos \emptyset$

RLC Circuit

- $v=V_{0} \sin w t$
- $i=I_{0} \sin (w t \pm \emptyset)$
- $\vec{v}=\overrightarrow{v_{R}}+\overrightarrow{v_{L}}+\overrightarrow{v_{C}}$
- Impedance of the Circuit
- $Z=R+j\left(X_{L}-X_{C}\right)$
- Current in the Circuit
- $i=v /\left(R+j\left(X_{L}-X_{C}\right)\right)$
- $p=v * i$
- $P_{a v g}=V_{r m s} I_{r m s} \cos \emptyset$

$\mathrm{v}=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$

RLC Circuit: v - i phasor

- $i_{R}=i_{L}=i_{C}=i$
- i is in phase with v_{R}
- i leads v_{C} by 90°
- ilags v_{L} by 90°

RLC Circuit: Voltage Triangle

- $\vec{v}=\overrightarrow{v_{R}}+\overrightarrow{v_{L}}+\overrightarrow{v_{C}}$
- $v^{2}=v_{R}{ }^{2}+\left(v_{L}-v_{C}\right)^{2}$
- $(i Z)^{2}=(i R)^{2}+\left(i\left(X_{L}-X_{c}\right)\right)^{2} v_{\mathrm{L}}-v_{c}$
- $Z^{2}=R^{2}+\left(X_{L}-X_{c}\right)^{2}$
- $\varnothing=\tan ^{-1} \frac{\left(v_{L}-v_{C}\right)}{v_{R}}$

RLC Circuit

- Case 1- $X_{L}>X_{C}$ Circuit behaves as RL circuit
- Case 2- $X_{L}<X_{C}$ Circuit behaves as RC circuit
- Case 3- $X_{L}=X_{C}$ Circuit behaves as pure R circuit

Types of Power

- Total/Apparent/Gross power
- The total power sent from the source end is called apparent power, and is denoted by S. It's unit of measurement is Volt-Amp (VA).
- Active/Real/Average/Net power
- The fraction of total power which is received/utilized/dissipated by load is called active power.
- It is denoted by P, and it's unit of measurement is Watts (W).
- This power is responsible for the actual work done.
- Reactive/Imaginary power
- That fraction of total power which gets bounced back from the load end towards source end.
- Denoted by Q, and it's unit of measurement is Volt-Amp-reactive (VAr)

Types of Power

- $P=V_{r m s} * I_{r m s} \cos \emptyset$
- $Q=V_{r m s} * I_{r m s} \sin \emptyset$
- $S=P+j Q=V_{r m s} * I_{r m s}$

POWER TRIANGLE

Problem

- In a series circuit voltage and current are given as
- $v=283 \sin 314 t$
- $i=4 \sin (314 t-45)$
- Find
- Impedance
- Circuit parameters
- Power factor and power
- Phasor diagram

Solution

- Impedance
- $z=\frac{V}{I}=\frac{V_{m}}{I_{m}}=\frac{283 \angle 0}{4 \angle-45}=70.75 \angle 45 \Omega$
- $\quad z=50.02+j 50.02 \Omega$
- Circuit parameters
- Impedance in rectangular form is given as
- $Z=R+j X_{L}$
- Hence,
- $R=50.02 \Omega$
- $X_{L}=50.02 \Omega=\omega L$
- $L=\frac{50.02}{314}=0.1593$ Henry
- Power factor
- $\cos \phi=\cos 45=0.7071$ (lag)
- Power
- $S=V_{r m s} I_{r m s}=\frac{283}{\sqrt{2}} \frac{4}{\sqrt{2}}=566 \mathrm{VA}$
- $P=V_{r m s} I_{r m s} \cos \phi=400.22 \mathrm{~W}$
- $Q=V_{r m s} I_{r m s} \sin \phi=400.22 \mathrm{VAR}$

Problem

- Given
- $v=200 \sin 377 t$
- $i=8 \sin (377 t-30)$
- Find
- Impedance
- Circuit parameters
- Power factor and power
- Phasor diagram

Solution

- Impedance
- $z=\frac{V}{I}=\frac{V_{m}}{I_{m}}=\frac{200 \angle 0}{8 \angle-30}=25 \angle 30 \Omega$
- $\quad z=21.65+j 12.5 \Omega$
- Circuit parameters
- Impedance in rectangular form is given as
- $z=R+j X_{L}$
- Hence,
- $R=21.65 \Omega$
- $X_{L}=12.5 \Omega=\omega L$
- $L=\frac{12.5}{377}=0.0331$ Henry
- Power factor
- $\cos \phi=\cos 30=0.866$ (lag)
- Power
- $S=V_{r m s} I_{r m s}=\frac{200}{\sqrt{2}} \frac{8}{\sqrt{2}}=800 \mathrm{VA}$
- $P=V_{r m s} I_{r m s} \cos \phi=692.82 \mathrm{~W}$
- $Q=V_{r m s} I_{r m s} \sin \phi=400 \mathrm{VAR}$

Problem

- A non-inductive resistance of 10Ω is connected in series with an inductive coil across $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The current drawn by the series combination is 10 A . The resistance of the coil is 2Ω. Determine:
- Inductance of the coil
- Power factor
- Voltage across the coil

Solution

- Total impedance of the circuit

$$
Z=(R+r)+j X_{L}=12+j X_{l}
$$

- Impedance is also given as

$$
Z=\frac{V}{I}=\frac{200}{10}=20 \Omega=\sqrt{R^{2}+X_{L}^{2}}
$$

- Inductance of the coil is given as

$$
\begin{array}{ll}
= & X_{L}=\sqrt{256}=16 \Omega \\
\Rightarrow & L=\frac{16}{314}=0.0509 \mathrm{H}
\end{array}
$$

- Power factor

$$
=\quad \cos \phi=\frac{R+r}{Z}=\frac{12}{20}=0.6(\mathrm{lag})
$$

- Voltage across coil is
- $\quad V_{\text {coil }}=I Z_{\text {coil }}$
- $\quad V_{\text {coil }}=10 * 16.12=161.245 \mathrm{~V}$

Problem

- Given
- $R=10 \Omega$
- $L=1 / 3 \mathrm{H}$
- $C=1 / 6 \mathrm{~F}$
- $v=200 \sin 3 t$
- Find,
- Z
- I
- $\cos \phi$
- $v_{R} v_{L} v_{C}$
- P,Q,S

Solution

- $v=\frac{200}{\sqrt{2}} \angle 0, \omega=3 \mathrm{rad} / \mathrm{sec}$
- $X_{L}=\omega L=3 * \frac{1}{3}=1 \Omega$
- $X_{C}=\frac{1}{\omega C}=\frac{6}{3}=2 \Omega$
- Impedance
- $Z=R+j\left(X_{L}-X_{C}\right)=10-j$
- $Z=10.04 \angle-5.71$
- Current
- $I=\frac{V}{Z}=\frac{\frac{200}{\sqrt{2}} \angle 0}{10.04 \angle-5.71}$
- $\quad I=14.08 \angle 5.71$
- Power factor
- $\cos \phi=\cos 5.71=0.99$ (lead)
- Voltages across elements
- $V_{R}=14.08 * 10=140.8 \mathrm{~V}$
- $V_{L}=14.08 * 1=14.08 \mathrm{~V}$
- $V_{C}=14.08 * 2=28.16 \mathrm{~V}$
- Power
- $S=V_{r m s} I_{r m s}=\frac{200}{\sqrt{2}} * 14.08=$ 1991.21VA
- $P=V_{r m s} I_{r m s} \cos \phi=1981.33 \mathrm{~W}$
- $\quad Q=V_{r m s} I_{r m s} \sin \phi=1981.1 \mathrm{VAR}$

Problem

- A 120 V 60 W lamp is to be operated on 220 V 50 Hz supply mains. In order that lamp should operate on correct voltage rating, calculate the value of
- Non-inductive resistance
- Pure inductance

Solution

- Lamp is pure resistive
- Current drawn by lamp at rated values is
- $I=\frac{P}{V}=\frac{60}{120}=0.5 \mathrm{~A}$
- Let a pure resistance of value R is added in series for proper voltage distribution, then
- $\quad V_{\text {supply }}=V_{\text {lamp }}+V_{R}$
- $V_{R}=220-120=100 \mathrm{~V}$
- $R=\frac{V}{I}=\frac{100}{0.5}=200 \Omega$
- If a pure inductor is added for proper voltage distribution then voltage across the coil is
- $\overrightarrow{V_{\text {supply }}}=\overrightarrow{V_{\text {lamp }}}+\overrightarrow{V_{\text {coil }}}$
- $\overrightarrow{V_{\text {coil }}}=\sqrt{220^{2}-120^{2}}=$ 184.39 V
- $X_{\text {coil }}=\frac{V_{\text {coil }}}{I_{\text {coil }}}=\frac{184.39}{0.5}=$ 368.78 V
- $L=\frac{368.78}{2 \pi * 50}=1.1738 \mathrm{H}$

Problem

- A metal filament lamp rated at 750 W 100 V , is to be connected in series with a capacitor, across a 230 V 50 Hz supply. Calculate the value of capacitance required.

Solution

- Lamp is purely resistive
- Current at rated supply is
- $I=\frac{P}{V}=\frac{750}{100}=7.5 \mathrm{~A}$
- Now, the voltage across required capacitor will be
- $\overrightarrow{V_{\text {supply }}}=\overrightarrow{V_{\text {lamp }}}+\overrightarrow{V_{\text {capacitor }}}$
- $\overrightarrow{V_{\text {capacitor }}}=\sqrt{230^{2}-100^{2}}=207.1231 \mathrm{~V}$
- $\quad X_{\text {capacitor }}=\frac{V_{\text {capacitor }}}{I_{\text {capacitor }}}=\frac{207.1231}{7.5}=27.6164 \mathrm{~V}$
- $C=\frac{1}{2 \pi * 50 * 27.6164}=115.261 \mu \mathrm{~F}$

Lecture 14

Resonance

- Definition
- When the natural frequency of any system gets matched with the frequency of driving force, the system responds with maximum amplitude, this condition is known as resonance.
- When the frequency of any electrical network or circuit gets matched with the supply frequency, the electrical circuit starts resonating with maximum amplitude at that particular frequency. This condition is known as resonance.

Resonance: Series RLC Circuit

- At $X_{L}=X_{C}$
- Circuit behaves as pure R circuit
- Current maximum
- Impedance minimum
- $\varnothing=0$
- $\cos \emptyset=1$

Resonance: Resonant frequency

- At
- $f=f_{r}$
- $X_{L}=X_{C}$
- $2 \pi f_{r} L=\frac{1}{2 \pi f_{r} C}$
- $f_{r}=\frac{1}{2 \pi V(L C)}$

Resonance: Resonance Curve

- Trace of current as a function of frequency
- At
- $f=f_{r}$,pure R circuit
- $f>f_{r}, R L$ circuit
- $f<f_{r}, R C$ circuit

Lecture 15

Resonance: Bandwidth

- Frequency range between half power frequencies $\left(f_{1} f_{2}\right)$ is defined as bandwidth of resonance curve and is given as
- Bandwidth $=\left(f_{2}-f_{1}\right) \mathrm{Hz}$
- At f_{r},
- Current maximum-I
- Power transfer maximum- P

- At $_{1} \mathrm{f}_{2}$,
- Power half-P/2
- Current-I/ $\sqrt{2}$

Prove $f_{0}=\sqrt{f_{1} f_{2}}$

- At half power frequencies
- $I=\frac{I_{m}}{\sqrt{2}}=\frac{V}{\sqrt{2} R}$
- Generalized equation for current is given as,
- $I=\frac{V}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}$
- Equating both
- $\frac{V}{\sqrt{2} R}=\frac{V}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}$

$f_{0}=\sqrt{f_{1} f_{2}}:$ cont...

$$
\begin{array}{ll}
& 2 R^{2}=R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2} \\
& \left(\omega L-\frac{1}{\omega C}\right)^{2}=R^{2} \\
& \omega L-\frac{1}{\omega C}= \pm R \\
& \omega_{1} L-\frac{1}{\omega_{1} C}=-R \\
& \omega_{2} L-\frac{1}{\omega_{2} C}=+R \\
& \left(\omega_{1}+\omega_{2}\right) L-\left(\frac{1}{\omega_{1}}+\frac{1}{\omega_{2}}\right) \frac{1}{C}=0 \\
\quad\left(\omega_{1}+\omega_{2}\right) L=\left(\frac{\omega_{1}+\omega_{2}}{\omega_{1} \omega_{2}}\right) \frac{1}{C} \\
\quad \omega_{1} \omega_{2}=\frac{1}{L C}=\omega_{r}^{2} \\
& \omega_{r}=\sqrt{\omega_{1} \omega_{2}} \\
& f_{r}=\sqrt{f_{1} f_{2}}
\end{array}
$$

Bandwidth Derivation

- Given
- $\omega L-\frac{1}{\omega C}= \pm R$, from previous slide
- Case 1
- $\omega L-\frac{1}{\omega C}=R$
- $\frac{\omega^{2} L C-1}{\omega C}=R$
- $\omega^{2} L C-\omega C R-1=0$
- By Shreedharacharya formula
- $\omega=\frac{+C R \pm \sqrt{C^{2} R^{2}+4 L C}}{2 L C}=\frac{R}{2 L} \pm \sqrt{\frac{R^{2}}{4 L^{2}}+\frac{1}{L C}}=\frac{R}{2 L} \pm \omega_{r}$
- Case 2
- $\omega=-\frac{R}{2 L} \pm \omega_{r}$

Bandwidth Derivation cont...

- ω can't be negative, hence roots are,
- $\omega_{1}=\omega_{r}-\frac{R}{2 L}$
- $\omega_{2}=\omega_{r}+\frac{R}{2 L}$
- And,
- $f_{1}=f_{r}-\frac{R}{4 \pi L}$
- $f_{2}=f_{r}+\frac{R}{4 \pi L}$
- Also,
- $\Delta \omega=\omega_{2}-\omega_{1}=\frac{R}{L}$
- $\Delta f=f_{2}-f_{1}=\frac{R}{2 \pi L}$

Resonance: Quality Factor

- Shows the quality of resonance curve
- Defined as the magnification ratio of voltage across L or C to the supply voltage
- Quality factor,
- $Q=\frac{V_{L} \text { or } V_{C}}{V_{\text {supply }}}=$
$\frac{i\left(X_{L} \text { or } X_{C}\right)}{i R}=\frac{X_{L} \text { or } X_{C}}{R}=$
$\frac{1}{R} \sqrt{\frac{L}{C}}$

Lecture 16 \& 17

Resonance: Parallel RLC Circuit

- $X_{L}=X_{C}$ or $Y_{L}=Y_{C}$
- RLC Circuit behaves as R circuit
- Current minimum
- Impedance maximum

Parallel Resonance: cont...

- Impedance maximum
- Current minimum

Parallel Resonance

Parallel Resonance: Resonant Frequency

- $I_{C}=I_{L} \sin \emptyset$
- $\frac{V}{X_{C}}=\frac{V}{Z_{L}} * \frac{X_{L}}{Z_{L}}$
- Where, Z_{L} is the impedance of the coil and is given by,
- $Z_{L}=\sqrt{R^{2}+X_{L}^{2}}$
- $X_{L} X_{C}=Z_{L}{ }^{2}$
- $\frac{\omega L}{\omega C}=R^{2}+\omega^{2} L^{2}$
- $\omega^{2} L^{2}=\frac{L}{C}-R^{2}$
- $\omega^{2}=\frac{1}{L C}-\frac{R^{2}}{L^{2}}$
- $\omega=\sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$

Parallel Resonance: Resonant Frequency cont...

- $f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
- If resistance is neglected, then
- $f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}}$
- Thus, if resistance is neglected, then the resonant frequency of parallel circuit is equal to the resonant frequency of series circuit. Also, at resonance the net susceptance is zero.
- Hence net reactive component of current is zero and the supply current is given by only active component as
- $I=I_{L} \cos \emptyset=\frac{V}{Z_{L}} \frac{R}{Z_{L}}=\frac{V R}{Z_{L}^{2}}=\frac{V R}{L / C}=\frac{V}{L / C R}$

Parallel Resonance: Resonant Frequency cont...

- Hence, at parallel resonance the net impedance is given by
- $Z_{D}=L / C R$
- And is known as dynamic impedance of the parallel circuit at resonance.
- The nature of this impedance is resistive only.

Parallel Resonance: Quality Factor

- Shows the quality of resonance curve
- Defined as the magnification ratio of current flowing through L or C to the supply current
- Quality factor,
- $Q=\frac{I_{L}}{I_{\text {supply }}}=\frac{V / Z_{L}}{V / Z_{D}}=\frac{Z_{D}}{Z_{L}}=\frac{L / R C}{\sqrt{L / C}}=\frac{1}{R} \sqrt{\frac{L}{C}}$

Problem

- A series RLC circuit has $\mathrm{R}=10 \Omega, \mathrm{~L}=0.1 \mathrm{H}, \mathrm{C}=8 \mu F$. Determine,
- Resonant frequency
- Q-factor of the circuit
- The half power frequency

Solution

- Resonant frequency
- $f_{r}=\frac{1}{2 \pi \sqrt{(L C)}}=\frac{1}{2 \pi \sqrt{0.1 * 8 * 10^{-6}}}=177.94 \mathrm{~Hz}$
- Q-factor
- $Q=\frac{1}{R} \sqrt{\frac{L}{C}}=\frac{1}{10} \sqrt{\frac{0.1}{8 * 10^{-6}}}=11.18$
- Half power frequency
- $f_{1}=f_{r}-\frac{R}{4 \pi L}=177.94-7.95=169.99 \mathrm{~Hz}$
- $f_{2}=f_{r}+\frac{R}{4 \pi L}=177.94+7.95=185.89 \mathrm{~Hz}$

Lecture 18

Power Factor

- Definition
- The factor of real power to the total or apparent power is called power factor.

$$
p f=\cos \phi=\frac{\text { RealPower }}{\text { ApparentPower }}=\frac{R}{Z}=\frac{V_{R}}{V_{\text {supply }}}=\frac{\text { RealFactor }}{\text { TotalFactor }}
$$

- The fraction of utilized power by load to the total power sent by source is called power factor.

Disadvantages of Low Power Factor

- Large generators and transformers are required to deliver the same load at low power factor.
- More conductor material is required in transmission lines due to large current.
- Copper losses are more at low pf.
- Low lagging pf leads to large voltage drop in transformers, generators and transmission lines, which results poor regulation.

Causes of Low Power Factor

- All ac motors and transformers operate at low pf. Pf decreases with decrease in load.
- Industrial heating furnaces like arc and induction furnaces operate at low lagging pf.

Lecture 19 \& 20

Three Phase System

- Balanced
- Unbalanced

Three Phase vs Single Phase

- The rating of a machine increases with increase in number of phases.
- Power factor of a single-phase motor is lower than that of a three-phase motor of same rating.
- Three phase motor has more output (>1.5 times) than single phase motor.
- Three phase system is more reliable and capable than single phase system
- Three phase system have higher efficiency compared to single phase system.

Important Terminologies

- Line Voltage
- Voltage difference between any two phases.
- Phase Voltage
- Voltage across any one phase of load.
- Line Current
- Current flowing through line between source and load
- Phase Current
- Current flowing through any one phase of load.

Three Phase System: Star

Since $I_{R}=I_{Y}=I_{B}=I_{p h}$
Therefore $I_{L}=I_{p h}$

$$
V_{R Y}=V_{R}-V_{Y} \quad I_{L}=I_{p h}=\frac{V_{p h}}{Z_{p h}}
$$

Line current $=$ Phase current

Three Phase System: Star cont...

- $\left|V_{R Y}\right|=\sqrt{\left|V_{R}\right|^{2}+\left|V_{Y}\right|^{2}+2\left|V_{R}\right|\left|V_{Y}\right| \cos 60}$
- Angle between V_{R} and V_{Y} is 60 degrees
- $\left|V_{R Y}\right|=\sqrt{V_{p h}^{2}+V_{p h}^{2}+2 V_{p h}^{2} \cos 60}$
- $\left|V_{R Y}\right|=\sqrt{3 V_{p h}^{2}}$
- $V_{L}=\sqrt{3} V_{p h}$
- Line voltage $=\sqrt{3}$ phase voltage

Three Phase System: Delta

- $V_{R Y}=V_{Y B}=V_{B R}=V_{L}=V_{p h}$

Three Phase System: Delta cont...

- $\left|I_{L}\right|=\sqrt{\left|I_{R Y}\right|^{2}+\left|I_{Y B}\right|^{2}+2\left|I_{R}\right|\left|Y_{Y}\right| \cos 60}$
- Angle between I_{R} and I_{Y} is 60 degrees
- $\left|I_{R Y}\right|=\sqrt{I_{p h}^{2}+I_{p h}^{2}+2 I_{p h}^{2} \cos 60}$
- $\left|I_{R Y}\right|=\sqrt{3 I_{p h}^{2}}$
- $I_{L}=\sqrt{3} I_{p h}$
- Line current $=\sqrt{3}$ phase current

Three Phase System: Power (star and delta)

- $P_{\text {total }}=\sqrt{3} V_{L} I_{L} \cos \emptyset \mathrm{~W}$
- $Q_{\text {total }}=\sqrt{3} V_{L} I_{L} \sin \emptyset \mathrm{VAR}$
- $S_{\text {total }}=\sqrt{3} V_{L} I_{L} \mathrm{VA}$

Problem

- A three-phase voltage source has a phase voltage of 120 V and supplies a star connected load having impedance of $36+\mathrm{j} 48 \Omega$ per phase. Calculate
- Line voltage
- Line current
- Power factor
- Total three phase power supplied to load.

Solution

- Line voltage
- $V_{L}=\sqrt{3} V_{p h}=\sqrt{3} * 120$
- $V_{L}=207.8 \mathrm{~V}$
- Line current
- $I_{L}=I_{p h}=\frac{V_{p h}}{Z_{p h}}=\frac{120}{60}=2 \mathrm{~A}$
- Power factor
- $\cos \emptyset=\frac{36}{60}=0.6$
- Three phase power
- $P=\sqrt{3} V_{L} I_{L} \cos 30=432 \mathrm{~W}$

Problem

- A star connected load has a three phase resistance of 8Ω and an inductive reactance of 6Ω in each phase. It is fed from a 400 V balanced three phase supply.
- Determine
- Line current
- Power factor
- Active and reactive power

Solution

- $V_{L}=\sqrt{3} V_{p h}$
- $V_{p h}=\frac{400}{\sqrt{3}}=230.94 \mathrm{~V}$
- $Z_{p h}=\sqrt{6^{2}+8^{2}}=10 \Omega$
- Line current
- $I_{L}=I_{p h}=\frac{V_{p h}}{Z_{p h}}=\frac{230.94}{10}=23.09 \mathrm{~A}$
- Power factor
- $\cos \emptyset=\frac{8}{10}=0.8$
- Three phase power
- $P=\sqrt{3} * 400 * 23.09 * \cos 36.86=12.8 \mathrm{KW}$
- $\mathrm{Q}=\sqrt{3} * 400 * 23.09 * \sin 36.86=9.6 \mathrm{KVAR}$

