
Programming For

Problem Solving

Lecture 1

1

Introduction to Computer

 The literal meaning of computer is, a device that can calculate. However, modern computers can

do a lot more than calculate.

 Computer is an electronic device that receives input, stores or processes the input as per user

instructions and provides output in desired format.

2

Block Diagram of Digital Computer

3

Components of Digital Computer

 A digital computer is considered to be a calculating device that can perform arithmetic operations

at enormous speed.

 1. Input Unit: The commonly used input devices are keyboard, mouse etc. Thus, we can

conclude that, all the input devices accepts the data and instruction from outside world, convert it

to a form that the computer can understand, supply the converted data to the computer system for

further processing.

 2. Storage Unit: The storage unit of a computer holds data and instructions that are entered

through the input unit, before they are processed. It stores programs, data as well as intermediate

results and results for output. Its main function is to store information.

4

Components of Digital Computer (Cont..)

 The various storage devices can be divided into 3 main categories:

 (a) Primary Storage (Main Memory): This memory is generally used to hold the program

being currently executed in the computer, the data being received from input device, the

intermediate and final results of a program. The primary memory is temporary in nature. The data

is lost when the computer is switched off.

 (b) Secondary Storage (Auxiliary Memory): It is a mass storage memory, slower but

cheaper. It is non-volatile in nature i.e. data is not lost even if the power supply is switched off.

Some of the most commonly used secondary storage devices are Hard Disk, Pen Drive etc. Their

access time is in milliseconds.

 (c) Cache Memory (High Speed Buffer): It is a high speed, expensive memory unit, which

is placed between the processor & primary memory, to reduce the mismatch between the speeds

of two units.

5

Components of Digital Computer (Cont..)

 3. Central Processing Unit (CPU): The control unit and arithmetic logic unit of computer are

together known as central processing unit (CPU). The CPU is like brain and performs following

functions: It performs all calculations, it takes all decisions, and it controls all units of a computer.

(a) Control Unit: It manages and coordinates the entire computer system and synchronizes its

working, thus referred to as “Central Nervous System” or “Brain of the Computer”.

 (b) Arithmetic and Logic Unit: The function of an Arithmetic logic unit (ALU) is to perform

arithmetic and logical operations such as addition, subtraction, multiplication, division, AND, OR,

NOT, Exclusive OR etc.

 4. Output Unit: An output unit performs the reverse operation of that of an input unit, so it

supplies information obtained from processing to outside world.

6

Classification of Computer

S. No Computer Type Features

1 Super Computer

 The fastest and most powerful type of computer is Supercomputers.

 They are very expensive and are employed for specialized applications that

require immense amounts of mathematical calculations.

 For example, weather forecasting, nuclear energy research, and petroleum

exploration.

2
Mainframe

Computer

 It is a very large and expensive computer capable of supporting hundreds, or

even thousands, of users simultaneously.

 For example, online reservation system, online banking system, In hierarchy

mainframes are just below supercomputers.

7

Classification of Computer (Cont..)

3 Mini Computer

 In size and power, minicomputers lie between workstations and mainframes.

 But in general, a minicomputer is a multiprocessing system capable of

supporting from 4 to about 200 users simultaneously.

4 Workstations

• It is a terminal or desktop computer in a network. In this context, workstation is

just a generic term for a user's machine (client machine) in contrast to a

"server" or "mainframe." (Workstations lie between mini computer and

personal computer).

5
Micro Computer or

Personal Computer

• Desktop Computer: It is a personal or micro-mini computer sufficient to fit on a

desk.

 Laptop Computer: It is a portable computer complete with an integrated screen

and keyboard.

8

Hardware & Software

Basis Hardware Software

Definition
Devices that are required to store and

execute (or run) the software.

Software is a collection of program that enables

a computer to perform a specific task

Types
Input, storage, processing, control, and

output devices.

System software, Programming software, and

Application software.

Examples
Monitor, Printer, Keyboard, Mouse,

Scanners

Adobe Acrobat, Google Chrome, Microsoft

Word, Microsoft Excel

Durability Hardware wears out over time. Software does not wear out over time.

Nature Hardware is physical in nature. Software is logical in nature.

9

Types of Software's

Basis System Software Application Software

Basic

System Software manages system

resources and provides a platform for

application software to run.

Application Software, when run, perform specific

tasks, they are designed for.

Language
System Software is written in a low-level

language, i.e. assembly language.

Application Software is written in a high-level

language like Java, C++, .net, VB, etc.

Run

System Software starts running when the

system is turned on, and runs till the system

is shut down.

Application Software runs as and when the user

requests.

Purpose System Software is general-purpose. Application Software is specific-purpose.

Examples Operating system.
Microsoft Office, Photoshop, Animation

Software, etc.

10

Programming For

Problem Solving

Lecture 2

11

Introduction to Operating System

 An Operating System (OS) is a system program which provides an interface between computer

user and hardware. Some popular Operating Systems include UNIX, Linux, and Windows etc.

 Resource Manager/Allocator: An operating system is termed as resource manager or

resource allocator, as its provides all necessary resources (Hardware, Software or Files) to

application execution inside a computer system, like to play a song, OS allocates operational

mouse, monitor, speaker, ram, hard disk, buses, processor etc. to application.

Following are some of important functions of an operating System.

 Process Management

 Memory Management

 Device Management

 File Management

 Security Management

12

Classification of Operating System

Multi Programming OS Multi Tasking OS Multi Threading OS

 In a multiprogramming system

there are one or more programs

loaded in main memory which

are ready to execute.

 Only one program at a time is

able to get the CPU for executing

its instructions (i.e., there is at

most one process running on the

system) while all the others are

waiting their turn.

 The main idea of

multiprogramming is to maximize

the use of CPU time.

 Multitasking refers to having

multiple (programs, processes,

tasks, threads) running at the

same time.

 This term is used in modern

operating systems when multiple

tasks share a common

processing resource (e.g., CPU

and Memory). At any time the

CPU is executing one task only

while other tasks waiting their

turn.

 Multithreading is an execution

model that allows a single

process to have multiple code

segments (i.e., threads) run

concurrently within the “context”

of that process.

 Multiple threads of a single

process can share the CPU in a

single CPU system or (purely)

run in parallel in a

multiprocessing system

13

CUI Vs GUI Operating System

BASIS CLI/CUI GUI

Basic

Command line interface enables a user to

communicate with the system through

commands.

Graphical User interface permits a user to

interact with the system by using graphics

which includes images, icons, etc.

Device used Keyboard Mouse and keyboard

Ease of Use
Hard to perform an operation and require

expertise.

Easy to perform tasks and does not require

expertise.

Memory Low memory consumption High memory consumption

Appearance Can't be changed Custom changes can be employed

Speed Fast execution speed Slow execution speed

14

Android Vs Windows Operating System

Basis Android Windows

Graphics Relatively Optimized Full fledged

Source Code Open source code Close source code

Security Comparatively Less Slightly More

Application Ahead For Mobile Known For PC

Developer Google Microsoft

15

Programming For

Problem Solving

Lecture 3

16

Generation of Programming Languages

Low level language High level language

Advantage Disadvantage

They are faster than high level language. They are comparatively slower.

Low level languages are memory efficient. High level languages are not memory efficient.

No need of translator except assembler for AL. Compiler & Interpreter is needed to convert HLL.

Disadvantage Advantage

Low level languages are difficult to learn. High level languages are easy to learn.

They are machine dependent and are not portable. They are machine independent and portable.

They are more error prone. They are less error prone.

Debugging and maintenance is difficult. Debugging and maintenance is comparatively easier.

Ex: Machine & Assembly Language Ex: C, C++, Java

17

Programming For

Problem Solving

Lecture 4

18

INTEGRATED DEVELOPMENT

ENVIRONMENT

 Editor

 It is a tool of IDE much like a notepad that is used to write or edit the source code(a program

written in C language) of any program.

 Editors are software programs that enable the user to create and edit text files.

 In the field of programming, the term editor usually refers to source code editors that include

many special features for writing and editing code.

 Preprocessor

 It is a program that process the source code before it passes through The compiler and convert

source code into expanded source code by mean of preprocessor directives.

 This is the first phase through which source code is passed. This phase include:

 1.Removal of Comments

 2.Expansion of Macros

 3.Expansion of the included files.

 4.Conditional compilation

19

Role of Assembler, Compiler & Interpreter

Assembler: An assembler is a system program, which convert an assembly language program in to

machine language program, Example (Merlin, Vasm).

Compiler: While compiler & interpreter is a system program will convert high level language

program in to machine language program.

Basis Compiler Interpreter

Definition
It Scans the entire program and translates

it into machine code (As Whole)

Translates program one statement at a time

(Line by Line)

Error Display Display the syntax errors as a whole Display the syntax errors line by line

Execution Time The overall execution time is faster The overall execution time is slower

Debugging Debugging is hard Debugging is easy

.exe file . exe file is created using compiler . exe file is not created using interpreter

Example
Programming language like C, C++ uses

compilers. (Turbo C, GCC)

Programming language like Python, Ruby, Java

uses interpreters. (Java Interpreter)

20

Linker and Loader

 Linker:

 It is a program which combines various pieces of relocatable object code and data together to

form a single executable code that can be loaded in primary memory.

 Linker is a program in a system which helps to link a object modules of program into a single

object file.

 It takes object modules from assembler as input and forms an executable file as output for loader.

 Linking is performed at both compile time, when the source code is translated into machine code

and load time, when the program is loaded into memory by the loader. Linking is performed at the

last step in compiling a program.

 Loader:

 It is a system program or a part of an operating system that is responsible for loading the

executable code into primary memory for its execution.

 Loader is the program of the operating system which loads the executable from the disk into the

primary memory(RAM) for execution.

 It allocates the memory space to the executable module in main memory and then transfers

control to the beginning instruction of the program.

21

Program Execution Cycle
 Hand written Program

Expanded Source code

C source code

Assembly Code

Relocatable object code

Executable Code

Primary memory

Object Code of Library

function

 Linker

Assembler

Loader

Compiler

Preprocessor

Text editor

22

Programming For

Problem Solving

Lecture 5

23

Algorithm & Its Characteristics

 A step-by-step method of solving a problem or making decision is termed as algorithm.

Properties of the algorithm

 Input. An algorithm has zero or more inputs, i.e., quantities which are given to it initially before

the algorithm begins.

 Output. An algorithm has one or more outputs i.e., quantities which have a specified relation to

the inputs.

 Finiteness. An algorithm must always terminate after a finite number of steps.

 Definiteness. Each step of an algorithm must be precisely defined; the actions to be carried out

must be rigorously and unambiguously specified for each case.

 Effectiveness. An algorithm is also generally expected to be effective. This means that all of

the operations to be performed in the algorithm must be sufficiently basic that they can in principle

be done exactly and in a finite length of time.

24

Algorithm & Its Characteristics (Cont..)

Advantages of algorithm

 An algorithm uses a definite procedure which makes it easy to understand.

 It is not dependent on any programming language, so it is easy to understand.

 Every step in an algorithm has its own logical sequence so it is easy to debug.

 By using algorithm, the problem is broken down into smaller pieces or steps.

Disadvantages of algorithm.

 Writing algorithm takes a long time & have no standard format.

 An Algorithm is not a computer program; it is rather a concept of how a program should be.

25

Example:- How to make Tea ??

It requires number of steps to make perfect tea

 step:-1 Need pan

 step:-2 Pour water and tea leaf

 step:-3 Boil for 10 minutes

 step:-4 Add some sugar and milk

 step:-5 Boil for next 10 minutes

 step:-6 Filter it

 step:-7 Serve it

so we are performing task step by step.

26

Flowchart & Its Notations

 Flowchart is a diagrammatic representation of sequence of logical steps of a program. Flowcharts

use simple geometric shapes to depict processes and arrows to show relationships and

process/data flow.

Advantages of flowchart:

 The Flowchart is an excellent way of communicating the logic of a program.

 It is easy and efficient to analyze problem using flowchart.

 It helps the programmer to write the program code.

Disadvantage of flowchart

 The flowchart can be complex when the logic of a program is quite complicated.

 Drawing flowchart is a time-consuming task.

 Difficult to alter the flowchart & uses special sets of symbols for every action.

 It is just a visualization of a program; it cannot function like an actual program.

27

Flowchart & Its Notations (Cont..)

Symbol Symbol Name Purpose

Start/Stop
Used at the beginning and end of the algorithm to

show start and end of the program.

Process Indicates processes like mathematical operations.

Input/ Output Used for denoting program inputs and outputs.

Decision
Stands for decision statements in a program, where

answer is usually Yes or No.

Arrow Shows relationships between different shapes.

28

Example

 To Draw the flow

chart of simple

interest.

29

Programming For

Problem Solving

Lecture 6

30

Concept of Pseudocode

 Definition: Pseudocode is an informal way of programming description that does not require

any strict programming language syntax or underlying technology considerations.

 It is used for creating an outline or a rough draft of a program. Pseudocode summarizes a

program’s flow, but excludes underlying details.

 System designers write pseudocode to ensure that programmers understand a software project's

requirements and align code accordingly.

Advantages of pseudo code:

• Pseudocode is understood by the programmers of all types.

• It enables the programmer to concentrate only on the solution.

Disadvantages of pseudo code:

• It cannot be compiled into an executable program.
31

Concept of Pseudocode (Cont..)

 Example: Pseudocode to calculate the average marks of a class having 10

students

 Set total to zero

 Set grade counter to one

 While grade counter is less than or equal to ten

 Input the student marks

 Add the marks into the total

 Set the class average to the total divided by ten

 Print the class average.

32

Programming For

Problem Solving

Lecture 7

33

STRUCTURE OF C PROGRAM

 Documentation section : It consists of a set of comment lines giving the name

author date etc. of program and other details.

 Link section: It provides information or instructions to the compiler to link functions

from the system library.

 Definition section: It defines all symbolic constants.

 Global declaration section: Variables that are declared outside all the functions and

are used in more than one function.

 Main function section: This section contains two parts declaration part and

execution part.

 Subprogram section: It contains all the user defined functions that are called in

main functions.

34

First C Program
 Write a program in C to find the addition of two number.

#include <stdio.h>

int main()

{

 int number1, number2, sum;

 printf("Enter two integers: ");

 scanf("%d %d", &number1, &number2);

 sum = number1 + number2;

 printf("\nThe Sum is%d”,sum);

 return 0;

}

Output:-

Enter two number 5 6

The Sum is 11

35

Compilation & Execution Process
System Ready

Write C Program & Save

Edit Source Code

Compile Source Code

Check Syntax

Error

Get Object Code

Link Object Code & System Library

Get Executable Code

Check Runtime

Error

Load Executable Code

Check Logical &

Input Error

Get Correct Output

Enter Correct Inputs

Using Loader

Using Linker

Using Compiler

Using C Editor

Y

Y

Y

36

File Based Structure of C

Handwritten Program

C Source Code (P.C)

C Expanded Source Code (P.I)

C Assembly Code (P.ASM)

Relocatable Object Code (P.OBJ) Object Code of Sys. Lib. (F.OBJ)

C Executable Code (P.EXE)

Primary Memory

Using C Editor

Using Preprocessor

Using Compiler

Using Assembler

Using Linker

Using Loader

37

Types of Programming Errors

 Syntax Error: The errors which arises due to violation of any rules of C language, during the

development of a program, those errors are known as syntax error. These errors are identified by

compiler during compilation. Example missing of semicolon.

 Runtime Error: The error which occurs during the execution of program, those errors are

known as runtime error. These error are identified by linker during linking object code with system

library. Example using print instead of printf.

 Logical Error: The errors which arises due to usage of wrong expression, formula for logic in

program, those errors are called as logical error. Example using 2 * 3.14 * r as area of circle.

These errors are not identify by compiler or linker.

 Input Data Error: The error which occur during the data entry process, because of entering the

wrong input values, during the execution of a program are called as input data error. 38

Programming For

Problem Solving

Lecture 8

39

Input Output Statement in C

 The input output statement are classified into two categories:

Type Input Function Output Function

Formatted I/O scanf() printf()

Unformatted I/O getchar(), getch(), gets(), getche() puts() , putch(), putchar()

40

Input Output Statement in C

scanf() Function : The function used to get input from the user during execution of the program and

stored in a variable of specified form is called scanf() function.

Syntax:

scanf(“format string”,& variable name);

Example:

 Single Input Example: scanf(“%d”,&a);

 Multiple Input Example: scanf(“%d%d”, &a,&b);

41

Input Output Statement in C

printf() Function: The function used to display text, constant or value of variable on screen in

specified format is called printf() function.

Syntax:

 printf(“format string”, argument list);

Example:

printf(“hello world”); // printf() with no argument list

printf(“Value=%d”,a); //printf() with one argument

42

Input Output Statement in C

 getchar(): The getchar function is a part of the standard C input/output library. It returns a single

character from a standard input device (typically a keyboard). The function does not require any

arguments, though a pair of empty parentheses must follow the word getchar.

Syntax

 character variable = getchar();

 Where character variable refers to some previously declared character variable

 putchar(): The putchar function like getchar is a part of the standard C input/output library. It

transmits a single character to the standard output device (the computer screen).

Syntax

 putchar(character variable)

 Where character variable refers to some previously declared character variable.

43

Input Output Statement in C

getch() getche()

getch() is used to get a character from console but does

not echo to the screen.

getche() is used to get a character from console, and

echoes to the screen.

It reads a single character directly from the keyboard,

without echoing to the screen.

getche() reads a single character from the keyboard and

echoes it to the current text window.

44

Role of Escape Sequence in C

 Backslash character constant is used to format output on time of execution.

Character Escape Sequence Result

Bell \a Beep Sound

Back Space \b Moves Previous Position

Horizontal Tab \t
Moves next horizontal tab

Vertical Tab \v Moves next vertical tab

Newline (line feed) \n Moves next line

Form feed \f Moves initial position next page

Carriage return \r Moves beginning of the next line

Single quote \’
Present Apostrophe mark

Double quotes \” Present double quotes

Backslash \\ Present Back slash mark

45

Role of Escape Sequence in C

 Backslash character constant is used to format output on time of execution

Example:

 main()

 {

 printf(“\nab”);

 printf(\bsi”);

 printf(“\rha”);

 }

Stepwise Output

 _

 a b

 a s i

 h a i

46

Programming For

Problem Solving

Lecture 9

47

Introduction to C Tokens

 The basic fundamental units used in C language are known as C tokens. C has six tokens as

given below:

Operators Keywords

Identifier

Special Symbol String

C Tokens

Constant

48

Introduction to C Tokens (Cont..)

 Keyword are also known as reserved words, whose meaning is already defined in C library.

There are mainly 32 keywords some are : int, char, float, double, if , else, break, continue ,case,

void etc.

 Identifier are also known as variable, these are those entity whose value may be changed any

time during execution of program. It is very important to declare the type of variable before it is

used in program.

Rules For Naming Variables

 A variable name is any combination of alphabets, digits or underscore

 The first character must be always alphabet or underscore

 No comma or blank space is allowed within variable name

 Only underscore is allowed in special symbols

 Examples are ac ,_cc ,c_a

49

Introduction to C Tokens (Cont..)

 Constant are entity or value that does not change during the execution of programs like 3.14

 Rules for character constant

 It is a single alphanumeric digit.

 The character is enclosed in single quotes.

 The maximum length of a character constant is one.

 Example ‘a’, ‘1’ , ‘@’

 Variable refers to the name of the memory location whose value can be change during program

execution.

 Eg:- int a;

 String is the collection of characters, digits or special symbols enclosed in double quotes,

terminated by null character like “Hello”
50

Introduction to C Tokens (Cont..)

 Example: Identify C tokens in the code given below

 void main()

 {

 int r;

 float ac, cc;

 clrscr();

 printf(“enter radius”);

 scanf(“%d”,&r);

 ac=3.14*r*r;

 cc=2*3.14*r;

 printf(“area=%f\tcircum=%f”,ac,cc);

 getch();

 }

S. No C Tokens Example

1 Keywords void, int, float

2 Identifiers r, ac, cc, printf, scanf

3 Constant 3.14, 2, \t

4 Operators =, *

5 String “enter radius”

6 Special Symbol {, }, ;

51

Overview of C Datatypes

 Datatype is used to declare the variable. It determine the type of value and the range of values

that can be stored inside a variable.

Datatype Format specifier Size Range

char %c 1 byte -128 to 127

signed Int %d 2 bytes -32768 to 32767

signed short int %d 2 bytes -128 to 127

signed long int %ld 4 bytes -2,147,483,648 to 2,147,483,647

unsigned int %u 2 bytes 0 to 65,535

unsigned short int %u 2 bytes 0 to 255

unsigned long int %lu 4 bytes 0 to 4,294,967,295

float %f 4 bytes 3.4E -38 to 3.4E +38

double %lf 8 bytes 1.7E -308 to 1.7E +308

long double %Lf 10 bytes 3.4E -4932 to 1.1E+4932

52

53

