
Programming For

Problem Solving

Lecture 10

1

Operators & Its Classification

 Operators are special symbols whose meaning is already known to C compiler. There are 45

operators in C classified as:

 Unary Operator: Operators that need only one operating value or operand to complete its task

is termed as unary operator. Example: (!) logical not (~) complement.

 Binary Operators: Operators that need two operand to complete its task is termed as binary

operator. Example + (Addition), * (Multiplication)

 Ternary Operators: Operators that need three operand to performed it task is termed as

conditional operator. Example exp1?exp2:exp3

 It first evaluate the exp1 condition, if it is true then exp2 is evaluated, if the condition is false then

exp3 is evaluated

2

Operators & Its Classification (Cont..)

 The operators are classified in eight general categories

 Arithmetic Operator

 Relational Operator

 Logical Operator

 Assignment Operator

 Increment / Decrement Operator

 Bitwise Operator

 Conditional Operator

 Special Operator

3

Operators & Its Classification (Cont..)

 Arithmetic Operators: This operators which help us to carryout basic arithmetic operations

are termed as arithmetic operators such addition, subtraction, multiplication, division

 Operator Meaning Examples

+ Addition 1+2 = 3

- Subtraction 3-2 = 1

* Multiplication 2*2 = 4

/ Division 2/2 = 1

% Modulo division 10%3 = 1

Operation Result Examples

Int/Int Int 5/2 = 2

Real/Int Real 5.0/2 = 2.5

Int/Int Int 5%2 = 1

Real/Int Real 5.0%2 = Error

Int/Int Int -5%-2 = -1

4

Operators & Its Classification (Cont..)

 Relational Operators: The operators which are used to form conditions for comparing two

operands or values are termed as relational operator. There are six relational operators used in C

 Operator Meaning Example Return value

< is less than 3<5 1

<= is less than or equal to 4<=2 0

> is greater than 7>5 1

>= is greater than or equal to 3>=5 0

== equal to 6==6 1

!= not equal to 5!=5 0

5

Programming For

Problem Solving

Lecture 11

6

Operators & Its Classification (Cont..)

 Logical Operators: The operators which are used to combine the results of two or more

conditions are termed as logical operator. There are 3 logical operators used in C

Operator Meaning Example Return value

&& Logical And (9>2) && (6>4) 1

|| Logical OR (9>2) || (3>4) 1

! Logical Not !4 0

AND (&&)

T T T

T F F

F T F

F F F

OR (||)

T T T

T F T

F T T

F F F

7

Operators & Its Classification (Cont..)

 Assignment Operators: The operators which are used to assign the right hand side

computed value to left hand side variable is termed as assignment operator.

 Syntax: identifier = expression; like int r=2, ac; ac=3.14*r*r

 Increment/Decrement Operator: The operator which is used to increment or decrement the

value of variable by one is termed as increment/decrement operator. Example ++, --

Pre-Inc/Dec Operator Post-Inc/Dec Operator

Operator comes before the operand Operator comes after the operand

Value is incremented first & then it is assigned Value is assign first & then it is incremented

int x=2, y;

y=++x

Then: x=3, y=3

int x=2, y;

y=x++

Then: x=3, y=2

8

Operators & Its Classification (Cont..)

 Bitwise Operators: The operators which are used to perform operation at bit level are termed

as bitwise operator. There are six bitwise operators used in C

 Operator Meaning Example Return value

& Bitwise AND 5&7 5

| Bitwise OR 5|7 7

^ Bitwise XOR 5^7 2

~ Complement ~5 -6

<< Left Shift 4<<2 16

>> Right Shift 16>>1 8

9

Bitwise operator contd…

1. Bitwise AND

 1 & 1 = 1

 1 & 0 = 0

 0 & 1 = 0

 0 & 0 = 0

2. Bitwise OR

 1 | 1 = 1

 1 | 0 = 1

 0 | 1 = 1

 0 | 0 = 0

 3. Bitwise XOR

 1 ^ 1 = 0

 1 ^ 0 = 1

 0 ^ 1 = 1

 0 ^ 0 = 0

Eg: x = 3 = 0000 0011

 y = 4 = 0000 0100

 x&y = 0000 0000

Eg: x = 3 = 0000 0011

 y = 4 = 0000 0100

 x|y = 0000 0111

Eg: x = 3 = 0000 0011

 y = 4 = 0000 0100

 x ^ y = 0000 0111

10

Bitwise Left shift Operator

 The Left shift operator (<<) shifts each bit of the operand to its Left. The general form

or the syntax of Left shift operator is

 variable << no. of bits positions

 if x = 7 (i.e., 0 0 0 0 0 1 1 1) the value of y in the expression

 y = x <<1 is 14

 0 0 0 0 1 1 1 0 = 14 since it shifts the bit position to its left by one bit. The value

stored in x is multiplied by 2N (where n is the no of bit positions) to get the required

value. For example, if x = 7 the result of the expression y = x << 2 is y = x * 22 (i.e.

28)

11

Bitwise Right shift Operator

 The Right shift operator (>>) shifts each bit of the operand to its Right. The general

form or the syntax of Right shift operator is

 variable >> no. of bits positions

 if x = 7 (i.e., 0 0 0 0 0 1 1 1) the value of y in the expression

 y = x >> 1 is 3

 0 0 0 0 0 0 1 1 = 3 since it shifts the bit position to its right by one bit. The value

stored in x is divided by 2N (where n is the no of bit positions) to get the required

value. For example, if x = 7 the result of the expression y = x << 2 is y = x / 22 (i.e. 1).

If you use the left shift operator i.e. x = x << 1 the value of x will be equal to 2 (i.e., 0

0 0 0 0 0 1 0) since the lost bit cannot be taken back.

12

Bitwise 1’s Complement & 2’ Complement

 The one’s complement operator (~) is a unary operator, which causes the bits of the

operand to be inverted (i.e., one’s becomes zero’s and zero’s become one’s)

 For Example, if x = 7

 i.e. 8 – bit binary digit is 0 0 0 0 0 1 1 1

 The One’s Complement is 1 1 1 1 1 0 0 0

13

Operators & Its Classification (Cont..)

 Special Operators: The operators like comma, sizeof are termed as special operator.

 Comma Operator: Comma operator is used to separate multiple values in an expression or a

statement

 Like int i=2, j;

 j = i + (1,2,3,4,5);

 j=7

 Sizeof Operator: sizeof operator is used to find the number of bytes occupied by a datatype,

variable or a value.

 Like int i;

 sizeof(int)=2 sizeof(i)=2 sizeof(5)=2

14

Programming For

Problem Solving

Lecture 12

15

Precedence & Associativity of Operator

 Precedence is a term which describes the order of execution of operators in an expression

having different priority. The highest precedence operator is applied first, followed by the next

highest, and so on.

 For example * has high precedence than +.

 Associativity is a term which describes the order of execution of operators in an expression

having same priority. It tell that how the operator of same precedence are grouped and how the

expression will be evaluated.

 For example arithmetic operator are left associative but assignment operator are right associative.

16

17

18

Precedence & Associativity of Operator

Operator Meaning of operator Associativity Priority

()

[]

->

.

Functional call

Array element reference

Indirect member selection

Direct member selection

Left to right 1

!

~

+

-

++

--

&

*

sizeof

(type)

Logical negation

Bitwise(1 's) complement

Unary plus

Unary minus

Increment

Decrement

Operator(Address)

Pointer reference

Returns the size

Type cast(conversion)

Right to left 2

19

Precedence & Associativity of Operator

Operator Meaning of operator Associativity Priority

*

/

%

Multiply

Divide

Remainder

Left to right 3

+

-

Binary plus(Addition)

Binary minus(subtraction)
Left to right 4

<<

>>

Left shift

Right shift
Left to right 5

<

<=

>

>=

Less than

Less than or equal

Greater than

Greater than or equal

Left to right 6

==

!=

Equal to

Not equal to
Left to right 7

20

Precedence & Associativity of Operator

Operator Meaning of operator Associativity Priority

& Bitwise AND Left to right 8

^ Bitwise exclusive OR Left to right 9

| Bitwise OR Left to right 10

&& Logical AND Left to right 11

|| Logical OR Left to right 12

?: Conditional Operator Right to left 13

=,*=,/=,%=,-=,&=,^=,|=,<<=

>>=
Assignment Operator Right to left 14

, Comma operator Left to right 15

21

Precedence & Associativity of Operator

 Example

 Y= 4 * 2 / 4 – 6 / 2 + 3 % 2 * 6 / 2 + 2 > 2 && 4 ! = 2

 = 8 / 4 – 6 / 2 + 3 % 2 * 6 / 2 + 2 > 2 && 4 ! = 2

 = 2 – 6 / 2 + 3 % 2 * 6 / 2 + 2 > 2 && 4 ! = 2

 = 2 – 3 + 3 % 2 * 6 / 2 + 2 > 2 && 4 ! = 2

 = 2 – 3 + 1 * 6 / 2 + 2 > 2 && 4 ! = 2

 = 2 – 3 + 6 / 2 + 2 > 2 && 4 ! = 2

 = 2 – 3 + 3 + 2 > 2 && 4 ! = 2

 = -1 + 3 + 2 > 2 && 4 ! = 2

 = 2 + 2 > 2 && 4 ! = 2

 = 4 > 2 && 4 ! = 2

 = 1&& 4 ! = 2

 = 1 && 1 = 1

22

Role of Type Conversion in C

 Type Casting means One data type converted into another data type. This is called Type

conversion or Type casting.

 Type conversion is classified into two types.

 1. Implicit Type Conversion (Automatic Type Conversion)

 2. Explicit Type Conversion (Manual Type Conversion)

short char

int

unsigned int

long int

unsigned long int

float

double

long double

23

Implicit conversion

 The Implicit Type Conversion is known as Automatic Type Conversion.

 C automatically converts any intermediate values to the proper type so that the expression can be

evaluated without losing any significance.

 Implicit type Conversion also known as Converted Lower order data type into Higher order data

type.

 Implicit Type Conversion also known as Widening.

 For Example:

 int a, b; float a,b;

 float c; int c;

 c = a + b; c=a+b; // wrong assignment

 Print c; Print c;

24

Explicit conversion
 The Explicit Type Conversion is, there are instances when we want to force a type conversion in a

way that is different from the automatic conversion. The Explicit Type Conversion is Converted

Higher order data type into Lower order data type.

 The Explicit type Conversion is also known as borrowing.

 The Explicit type conversion forces by a casting operator.

syntax

(type_name) expression;

Where type_name is one of the standard C data type.The expression may be a constant, variables or

an expression.

For Example:

 float a, b;

 int c;

 c = (int) a + (int) b;

 Print c;

25

Role of Type Conversion in C

Implicit Type Conversion Explicit Type Conversion

It is a Automatic Type Conversion It is a Manual Type Conversion

It is performed in lower to higher datatype only It can be performed in any order

float i; i=5.0 / 2 = 2.5

Here 5.0 belongs to double datatype

2 belongs to int datatype

So 2 get converted in to double before execution

float i; i=(int)5.0 / 2 = 2.0

Here 5.0 belongs to double datatype

2 belongs to int datatype

But 5.0 get converted in to int before execution

26

Programming For

Problem Solving

Lecture 13

27

28

Simple if

 If the expression evaluates to true, then the block of code inside the 'if' statement will be

executed.

 If the expression evaluates to false, then the first set of code after the end of the 'if' statement

(after the closing curly brace) will be executed.

 C programming language assumes any non-zero and non-null values as true and if it is

either zero or null, then it is assumed as false value.

syntax

if(expression)

 {

 statements ;

 }

29

IF STATEMENTS

30

Simple if example

#include<stdio.h>

int main()

{

int quant,cost;

Printf(”\n Enter number of items and cost per item \n”);

Scanf(“%d%d%”,&quant,&cost);

bill=quant*cost;

if(bill>=3000)

{

bill=bill-500;

printf(“You will get 500RS Discount”);

}

return 0;

}

31

If else statement

 The if statement alone tells us that if a condition is true it will execute a block of statements and if

the condition is false it won’t.

 But what if we want to do something else if the condition is false. Here comes the C else

statement.

 else is optional statement.

 We can use the else statement with if statement to execute a block of code when the condition is

false.

32

General Syntax

if(expression)

{

 statement 1;

}

else

 {

 statement 2;

}

33

34

Example:- WAP to print even or odd
#include<stdio.h>

#include<conio.h>

Void main()

{

int n;

clrscr();

printf(“enter the no”);

scanf(“%d”,&n);

if(n%2==0)

printf(“\n%dis even no”);

else

printf(“\n%d is odd no”);

getch();

}

 35

Programming For

Problem Solving

Lecture 14

36

Nested if else

 Which means you can use if or else statement inside another if or else block.

 Code needs to be executed to match the corresponding if and else and pair of braces.

 if the condition is true it goes to inner if , and statements will execute, other wise statement in else

block will execute.

37

Gernal Syntax

if(condition1)

{

 if (condition2)

 {

 Statement 1;

 }

 else

 {

 Statement 2;

 }

}

else

 {

 if(condition 3)

 {

 statement 3;

 }

 else

 {

 statement 4;

 }

}

38

39

Program to find largest of three number

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b,c;

clrscr();

printf”\n enter \n”);

Scanf(“%d%d%d”,&a,&b,&c);

if(a>b)

{

if(a>c)

 {

printf(“\n%dislargest”,a);

 }

else{

printf(“\n %d is largest”,c);

}}

else

{

 if(b>c)

 {

printf(“\n %d is largest”,b);

 }

else

{

printf{“\n%d is largest,c);

}}

getch();

}

40

WAP to check year is leap or not

#include<stdio.h>

int main()

{

int yr;

printf(“\n enter year\n”);

scanf(“%d”,&yr);

If(yr%100==0)

{

 if(yr%400==0)

 {

 printf(“\n %d is leap yr”,yr);

 }

 else

 {

printf(“\n%d is not a leap yr”,yr);

}}

else

{

 if(yr%4==0)

 {

 printf(“\n %d is leap yr”,yr)

 }

 else

 {

 printf(“\n %d is not leap yr”,yr);

}

}

return 0;

41

Programming For

Problem Solving

Lecture 15

42

Else if ladder

-In C programming language the else if ladder is a way of putting multiple ifs together when multipath

decisions are involved.

-It is a one of the types of decision making and branching statements.

-A multipath decision is a chain of if’s in which the statement associated with each else is an if.

-The if – else – if statement is also known as the if-else-if ladder or the if-else-if staircase.

-The conditions are evaluated from the top to downwards

43

Else if ladder

Syntax:-

if(condition1)

statement1;

else if(condition2)

statement 2;

else if (condition3)

statement3;

 -

 -

 -

else

 statement n;

44

45

Example

#include <stdio.h>

 int main()

 {

 int x;

 x = 0;

 clrscr ();

 printf(“Enter Choice (1 - 3) : “);

 scanf(“%d”, &x);

 if (x == 1)

 printf (“\nChoice is 1”);

 else if (x == 2)

 printf (“\nChoice is 2”);

 else if (x == 3)

 printf (“\nChoice is 3”);

 else

 printf (“\nInvalid Choice “);

 return 0;

 }

 46

Programming For

Problem Solving

Lecture 16

47

SWITCH STATEMENT

It is a in built multiway decision system in C.

The control statement that allows us to make a decision from the number of choices is called the

switch case statement.

Rules for switch statement

 the switch case must be constant or a constant expression.

 the case label must be constant and unique.

 case label must end with colon(:) and each statement with semi colon(;)

 case label can be int or char constant but it cannot be float.

 using break and default is optional.

48

Syntax

Syntax:-

switch(integer exp)

{

case value1:

 block 1;

 break;

case value2:

 block 2;

 break;

case value n:

 block n;

 break;

default:

 block x;

}

49

Use of break and default with switch.

 You can use the break statement to end processing of a particular labeled statement within the

switch statement.

 It branches to the end of the switch statement. Without break, the program continues to the next

labeled statement, executing the statements until a break or the end of the statement is reached.

 This continuation may be desirable in some situations.

50

Use of default with switch

 The default statement is executed if no case constant-expression value is equal to the value of

expression.

 If there's no default statement, and no case match is found, none of the statements in the switch

body get executed.

 There can be at most one default statement.

 The default statement doesn't have to come at the end. It may appear anywhere in the body of the

switch statement.

 A case or default label can only appear inside a switch statement.

51

PROGRAM TO DESIGN A CALCULATOR

#include <stdio.h>

int main()

{

int a,b,c,ch;

printf("\nEnter 1 for addition:\n ");

printf("Enter 2 for subtraction:\n ");

printf("Enter 3 for multiply:\n");

printf("Enter 4 for division:\n ");

scanf("%d",&ch);

printf("Enter a number:\n");

scanf("%d",&a);

printf("Enter second number:\n");

scanf("%d",&b);

switch(ch)

{

case 1 : c=a+b;

 printf(“sum is :%d\n",c);

 break;

case 2 : c=a-b;

 printf("Sub is : %d\n",c);

 break;

case 3 : c=a*b;

 printf(“Mul is%d\n",c);

 break;

case 4 : c=a/b;

 printf("div is : %d\n",result);

 break;

default: printf("wrong input\n");

}

 return 0;

 }

52

Find Output

#include <stdio.h>

#include<conio.h>

 void main()

 {

 int num=2;

switch(num+2)

 {

 case 1:

printf("Case1: Value is: %d", num);

case 2:

 printf("Case1: Value is: %d", num);

case 3:

 printf("Case1: Value is: %d", num);

default:

printf("Default: Value is: %d", num);

 }

getch();

 }
53

Calculator
#include <stdio.h>

#include<conio.h>

void main()

{

char operator;

int num1,num2;

printf(“\n Enter the operator (+, -, *, /):”);

scanf(“%c”,&operator);

printf(“\n Enter the Two numbers:”);

scanf(“%d%d”,&num1,&num2);

switch (operator)

{

case ‘+’:

printf(“%d+%d=%d”,num1,num2,num1+nu

m2);

break;

case ‘-‘:

printf(“%d-%d=%d”,num1,num2,num1-

num2);

break;

case ‘*’:

printf(“%d*%d=%d”,num1,num2,num1*

num2);

break;

case ‘/’:

printf(“%d / %d =

%d”,num1,num2,num1/num2);

break;

default:

printf(“\n Enter the operator only”);

break;

}

getch();

}

54

55

