Unit- 5

Vector Calculus

miet

Lecture 37(I)

Gradient

Scalar Point Function

If to each point $P(x, y, z)$ of a region R in space there corresponds a unique scalar $f(P)$, then f is called a scalar point function.
For example, the temperature distribution in a heated body, density of a body and potential due to gravity are the examples of a scalar point function.

Mathematically

$f(x, y, z)=x^{2}+2 y z^{5} \quad$ is an example of scalar function

Vector Point Function

miet

If to each point $P(x, y, z)$ of a region R in space there corresponds a unique vector $f(P)$, then f is called a vector point function. The velocity of a moving fluid, gravitational force are the examples of vector point function.

Mathematically
$\mathbf{r}(t)=\cos t \mathrm{i}+\sin t \mathbf{j}+t \mathbf{k}$, be an example of vector point function

Vector Differential Operator

The vector differential operator Del is denoted by ∇. It is defined as

$$
\nabla=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}
$$

GRADIENT OF SCALAR FIELD

If $\phi(x, y, z)$ be a scalar function then $\hat{i} \frac{\partial \phi}{\partial x}+\hat{j} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}$ is called the gradient of the scalar function ϕ.

And is denoted by grad ϕ.
Thus,

$$
\begin{aligned}
\operatorname{grad} \phi & =\hat{i} \frac{\partial \phi}{\partial x}+\hat{j} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z} \\
\operatorname{gard} \phi & =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \phi(x, y, z) \\
\operatorname{gard} \phi & =\nabla \phi
\end{aligned}
$$

GEOMETRICAL INTERPRETATION

miet

If a surface $\phi(x, y, z)=c$ passes through a point P. The value of the function at each point on the surface is the same as at P. Then such a surface is called a level surface through P. For example, If $\phi(x, y, z)$ represents potential at the point P, then equipotential surface $\phi(x, y, z)=c$ is a level surface.

Two level surfaces can not intersect.
Let the level surface pass through the point P at which the value of the function is ϕ. Consider another level surface passing through Q, where the value of the function is $\phi+d \phi$.

Let \bar{r} and $\bar{r}+\delta \bar{r}$ be the position vector of P and Q then $\overrightarrow{P Q}=\delta \bar{r}$

$$
\begin{align*}
\nabla \phi \cdot d \bar{r} & =\left(\hat{i} \frac{\partial \phi}{\partial x}+\hat{j} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}\right) \cdot(\hat{i} d x+\hat{j} d y+\hat{k} d z) \\
& =\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y+\frac{\partial \phi}{\partial z} d z=d \phi \tag{1}
\end{align*}
$$

If Q lies on the level surface of P, then $d \phi=0$
Equation (1) becomes $\quad \nabla \phi . d r=0 . \quad$ Then $\bar{\nabla} \phi$ is \perp to $d r$ (tangent).
Hence, $\nabla \phi$ is normal to the surface $\phi(x, y, z)=c$

PROPERTIES OF GRADIENT

(a) If ϕ is a constant scalar point function, then $\nabla \phi=\overrightarrow{0}$
(b) If ϕ_{1} and ϕ_{2} are two scalar point functions, then
(i) $\nabla\left(\phi_{1} \pm \phi_{2}\right)=\nabla \phi_{1} \pm \nabla \phi_{2}$
(ii) $\nabla\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right)=c_{1} \nabla \phi_{1}+c_{2} \nabla \phi_{2}$, where c_{1}, c_{2} are constant
(iii) $\nabla\left(\phi_{1} \phi_{2}\right)=\phi_{1} \nabla \phi_{2}+\phi_{2} \nabla \phi_{1}$
(iv) $\nabla\left(\frac{\phi_{1}}{\phi_{2}}\right)=\frac{\phi_{2} \nabla \phi_{1}-\phi_{1} \nabla \phi_{2}}{\phi_{2}^{2}}, \phi_{2} \neq 0$.

EXAMPLE 1:

miet

Find grad ϕ when ϕ is given by $\phi=3 x^{2} y-y^{3} z^{2}$ at the point $(1,-2,-1)$. SOLUTION:

$$
\begin{aligned}
\text { Grad } \phi & =\nabla \phi=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(3 x^{2} y-y^{3} z^{2}\right) \\
& =\hat{i} \frac{\partial}{\partial x}\left(3 x^{2} y-y^{3} z^{2}\right)+\hat{j} \frac{\partial}{\partial y}\left(3 x^{2} y-y^{3} z^{2}\right)+\hat{k} \frac{\partial}{\partial z}\left(3 x^{2} y-y^{3} z^{2}\right) \\
& =\hat{i}(6 x y)+\hat{j}\left(3 x^{2}-3 y^{2} z^{2}\right)+\hat{k}\left(-2 y^{3} z\right) \\
& =-12 \hat{i}-9 \hat{j}-16 \hat{k} \text { at the point }(1,-2,-1) .
\end{aligned}
$$

EXAMPLE 2.

Find a unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point
(1, 2, - 1).

SOLUTION

Let

$$
\begin{aligned}
\phi & =x^{3}+y^{3}+3 x y z-3, \text { then } \frac{\partial \hat{\phi}}{\partial x}=3 x^{2}+3 y z, \frac{\partial \hat{\phi}}{\partial y}=3 y^{2}+3 x z, \frac{\partial \hat{\phi}}{\partial z}=3 x y \\
\nabla \phi & =\hat{i} \frac{\partial \phi}{\partial x}+\hat{j} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}=\left(3 x^{2}+3 y z\right) \hat{i}+\left(3 y^{2}+3 x z\right) \hat{j}+(3 x y) \hat{k}
\end{aligned}
$$

miet

$\operatorname{At}(1,2,-1), \nabla \phi=-3 \hat{i}+9 \hat{j}+6 \hat{k}$
which is a vector normal to the given surface at $(1,2,-1)$.
Hence a unit vector normal to the given surface at $(1,2,-1)$

$$
=\frac{-3 \hat{i}+9 \hat{j}+6 \hat{k}}{\sqrt{\left[(-3)^{2}+(9)^{2}+(6)^{2}\right]}}=\frac{-3 \hat{i}+9 \hat{j}+6 \hat{k}}{3 \sqrt{14}}=\frac{1}{\sqrt{14}}(-\hat{i}+3 \hat{j}+2 \hat{k})
$$

EXAMPLE 3

$$
\begin{gathered}
\text { If } \nabla \phi=\left(y^{2}-2 x y z^{3}\right) i+\left(3+2 x y-x^{2} z^{3}\right) j+\left(6 z^{3}-3 x^{2} y z^{2}\right) k, \text { find } \phi . \\
\text { SOLUTION }
\end{gathered}
$$

$$
\text { Let } \begin{aligned}
\overrightarrow{\mathbf{F}} \cdot d \vec{r} & =\nabla \phi \\
& =\nabla \phi \cdot d \vec{r} \\
& =\left(\frac{\partial \phi}{\partial x} \hat{i}+\frac{\partial \phi}{\partial y} \hat{j}+\frac{\partial \phi}{\partial z} \hat{k}\right) \cdot(d x \hat{i}+d y \hat{j}+d z \hat{k}) \\
& =\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{d y} d y+\frac{\partial \phi}{\partial z} d z=d \phi
\end{aligned}
$$

$$
\begin{aligned}
& \quad \therefore \quad d \phi=\overrightarrow{\mathrm{F}} \cdot d \vec{r} \\
& = \\
& =\left\{\left(y^{2}-2 x y z^{3}\right) \hat{i}+\left(3+2 x y-x^{2} z^{3}\right) \hat{j}+\left(6 z^{3}-3 x^{2} y z^{2}\right) \hat{k}\right\} .(d x \hat{i}+d y \hat{j}+d z \hat{k}) \\
& =\left(y^{2} d x+2 x y d x\right)-\left(3 x y z^{3} d x+x^{2} z^{3} d y+\left(6 z^{3}-3 x^{2} y z^{2}\right) d z z^{2} d z\right)+3 d y+6 z^{3} d z \\
& = \\
& d\left(x y^{2}\right)-\mathrm{d}\left(x^{2} y z^{3}\right)+d(3 y)+d\left(\frac{3}{2} z^{4}\right) \\
& \quad \phi=x y^{2}-x^{2} y z^{3}+3 y+\frac{\mathbf{3}}{2} z^{4}+c
\end{aligned}
$$

EXAMPLE 4

$$
\text { If } u=x+\dot{y}+z, v=x^{2}+y^{2}+z^{2}, w=y z+z x+x y \text {, prove }
$$

that
$(\operatorname{grad} u) \cdot\left[(\operatorname{grad} v) \times\left(\operatorname{grad} w^{\cdot}\right)\right]=0$.
SOLUTION
We have $\operatorname{grad} u=\frac{\partial u}{\partial x} \mathbf{i}+\frac{\partial u}{\partial y} \mathbf{j}+\frac{\partial u}{\partial z} \mathbf{k}$

$$
=\mathbf{1} \mathbf{i}+\mathbf{1} \mathbf{j}+\mathbf{1} \mathbf{k}=\mathbf{i}+\mathbf{j}+\mathbf{k},
$$

$\operatorname{grad} \boldsymbol{v}=\frac{\partial v}{\partial x} \mathbf{i}+\frac{\partial v}{\partial y} \mathbf{j}+\frac{v}{\partial z} \mathbf{k}=2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}$
and $\operatorname{grad} \quad w=\frac{\partial w}{\partial x} \mathbf{i}+\frac{\partial w}{\partial y} \mathbf{j}+\frac{\partial w}{\partial z} \mathbf{k}$
$\therefore \quad \operatorname{grad} u \cdot[(\operatorname{grad} v) \times(\operatorname{grad} w)]=$ scalar triple product of the vectors $\operatorname{grad} u, \operatorname{grad} v$ and $\operatorname{grad} w$

$$
\begin{aligned}
& \begin{array}{l}
=\left\lvert\, \begin{array}{cc}
1 & 1 \\
2 x & 2 y \\
y+z & z+x \\
2 \mid & 1 \\
x+y+z & x+y+z \\
y+z & z+x
\end{array}\right.
\end{array} \\
& \left.\begin{array}{c}
1 \\
2 z+y
\end{array}|=2| \begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
y+z & z+x & x+y
\end{array} \right\rvert\, \\
& \begin{array}{l}
==2(x+y+z) \cdot \left\lvert\, \begin{array}{c}
1 \\
1 \\
y+z
\end{array}\right. \\
=2(x+y+z) \cdot 0=0^{y+z}
\end{array} \\
& \left.\begin{array}{c|c}
1 \\
x+y+z \\
x+y
\end{array} \right\rvert\,, \text { by } R_{2}+R_{3}
\end{aligned}
$$

EXAMPLE 5

If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, show that
(i) grad $r=\frac{\vec{r}}{r}$
(ii) $\operatorname{grad}\left(\frac{1}{r}\right)=-\frac{\vec{r}}{r^{3}}$
(iii) $\nabla r^{n}=n r^{n-2} \vec{r}$

SOLUTION

$r=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$, or $\quad r^{2}=x^{2}+y^{2}+z^{2}$
Differentiating partially w.r.t. x, we have $2 r \frac{\partial r}{\partial x}=2 x$ or $\frac{\partial r}{\partial x}=\frac{x}{r}$
Similarly,

$$
\frac{\partial r}{\partial y}=\frac{y}{r} \text { and } \frac{\partial r}{\partial z}=\frac{z}{r}
$$

(i) $\operatorname{grad} r=\nabla r=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) r=\hat{i} \frac{\partial r}{\partial x}+\hat{j} \frac{\partial r}{\partial y}+\hat{k} \frac{\partial r}{\partial z}$

$$
=\hat{i}\left(\frac{x}{r}\right)+\hat{j}\left(\frac{y}{r}\right)+\hat{k}\left(\frac{z}{r}\right)=\frac{x \hat{i}+y \hat{j}+z \hat{k}}{r}=-\frac{\vec{r}}{r} .
$$

(ii) $\operatorname{grad}\left(\frac{1}{r}\right)=\nabla\left(\frac{1}{r}\right)=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(\frac{1}{r}\right)$

$$
\begin{aligned}
& =\hat{i}\left(-\frac{1}{r^{2}} \frac{\partial r}{\partial x}\right)+\hat{j}\left(-\frac{1}{r^{2}} \frac{\partial r}{\partial y}\right)+\hat{k}\left(-\frac{1}{r^{2}} \frac{\partial r}{\partial z}\right) \\
& =\hat{i}\left(-\frac{1}{r^{2}} \cdot \frac{x}{r}\right)+\hat{j}\left(-\frac{1}{r^{2}} \cdot \frac{y}{r}\right)+\hat{k}\left(-\frac{1}{r^{2}} \cdot \frac{z}{r}\right) \\
& =-\frac{1}{r^{3}}(x \hat{i}+y \hat{j}+z \hat{k})=-\frac{\vec{r}}{r^{3}} .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\nabla r^{n}=(\hat{i} & \left.\frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) r^{n}=\hat{i}\left(n r^{n-1} \frac{\partial r}{\partial x}\right)+\hat{j}\left(n r^{n-1} \frac{\partial r}{\partial y}\right)+\hat{k}\left(n r^{n-1} \frac{\partial r}{\partial z}\right) \\
& =\hat{i}\left(n r^{n-1} \cdot \frac{x}{r}\right)+\hat{j}\left(n r^{n-1} \cdot \frac{y}{r}\right)+\hat{k}\left(n r^{n-1} \cdot \frac{z}{r}\right)=n r^{n-2}(x \hat{i}+y \hat{j}+z \hat{k})=n r^{n-2} \vec{r} .
\end{aligned}
$$

EXAMPLE 6

Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point (2, - 1, 2).

SOLUTION

Let

$$
\phi_{1}=x^{2}+y^{2}+z^{2}=9 \text { and } \phi_{2}=x^{2}+y^{2}=z=3
$$

Then

$$
\operatorname{grad} \phi_{1}=2 x \hat{i}+2 y \hat{j}+2 z \hat{k} \text { and } \operatorname{grad} \phi_{2}=2 x \hat{i}+2 y \hat{j}-\hat{k}
$$

Let $\vec{n}_{1}=\operatorname{grad} \phi_{1}$ at the point $(2,-1,2)$ and $\overrightarrow{n_{2}}=\operatorname{grad} \phi_{2}$ at the point $(2,-1,2)$. Then

$$
\overrightarrow{n_{1}}=4 \hat{i}-2 \hat{j}+4 \hat{k} \quad \text { and } \quad \overrightarrow{n_{2}}=4 \hat{i}-2 \hat{j}-\hat{h}
$$

The vectors n_{1} and \vec{n}_{2} are along normals to the two surfaces at the point $(2,-1,2)$. If θ is the angle between these vectors, then

$$
\begin{gathered}
\cos \theta=\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|}=\frac{4(4)-2(-2)+4(-1)}{\sqrt{16+4+16} \cdot \sqrt{16+4+1}}=\frac{16}{6 \sqrt{21}} \\
\theta=\cos ^{-1}\left(\frac{8}{3 \sqrt{21}}\right) .
\end{gathered}
$$

APPLICATION OF GRADIENT EQUATION OF THE TANGENT PLANE

Tangent Plane. Let \mathbf{r}_{0}, be the position vector of the point of contact A and \mathbf{r} be the position vector of any point P on the tangent plane.

Then $\mathbf{r}-\mathbf{r}_{0}$ is a vector parallel to the tangent plane and $\operatorname{grad} f$ is normal to the tangent plane. These two are perpen-
 dicular

$$
\therefore \quad\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot \operatorname{grad} f=0
$$

miet

This equation will be satisfied by any point r lying in the tangent plane. Moreover, for any point with position vector r which satisfies (I) the vector $\left(r-r_{0}\right)$ is parallel to the tangent plane. It follows that $r-r_{0}$ lies in the plane; hence the end point of r in the plane. Therefore (1) is the equation of the tangent plane.

EXAMPLE 7

Find the equation of the tangent plane and normal to the surface $x y z$ $=3$ at the point $(1,2,2)$.

SOLUTION

$$
\operatorname{grad} f=y z \mathbf{i}+z x \mathbf{j}+x y \mathbf{k}=4 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}
$$

Also

$$
\begin{aligned}
\mathbf{r}-\mathbf{r}_{\mathbf{0}} & =(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})-(\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}) \\
& =(x-1) \mathbf{i}+(y-2) \mathbf{j}+(z-2) \mathbf{k}
\end{aligned}
$$

The equation to the tangent plane is

$$
\begin{array}{ll}
\quad\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right) \cdot & \operatorname{grad} f=0 \\
& \{(x-1) \mathbf{i}+(y-2) \mathbf{j}+(z-2) \mathbf{k}\} \cdot(4 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k})=0 \\
\therefore \text { i.e., } & 4(x-1)+2(y-2)+2(z-2)=0 \\
\text { i.e., } & 2 x+y+z=6
\end{array}
$$

Gradient in Polar Co-ordinate

If $f(r)$ is a scalar function of scalar r then it's gradient is given by

$$
\text { grad } \left.f=\frac{2}{\partial r}(f) \cdot \hat{1} \quad r=1 \vec{r} \right\rvert\, \text { where } \vec{r}=x \hat{i}+x \hat{j}+z \hat{k},
$$

Ex:-1 Prove that grad $r^{n}=n r^{n-2} \vec{r}$ where $r=|\vec{r}|$
Sol $n \rightarrow$ grad $r^{n}=\frac{2}{2 r}\left(r^{n}\right) \cdot \hat{r}^{n}=n r^{n-1} \hat{r}=n r^{n-2} \vec{r}$
where $\hat{1}$ ic the unit rector in the dircetion of r.

Practice Questions

Q1 If $r=|\vec{r}|$ where $\vec{r}=x \hat{i}+x \hat{j}+z \hat{k}$, prove that
(i) $\nabla f(r)=f^{\prime}(r) \nabla r$
(ii) $\nabla \log r=\frac{\vec{r}}{r^{2}}$

Q2
If θ is the acute angle between the surfaces $x y^{2} z=3 x+z^{2}$ and $3 x^{2}-y^{2}+2 z=1$ at the point $(1,-2,1)$, show that

$$
\cos \theta=\frac{3}{7 \sqrt{6}} .
$$

Practice Questions

miet

Q3 Evaluate grad ϕ if $\phi=\log \left(x^{2}+y^{2}+z^{2}\right)$ Ans. $\frac{2(x \hat{i}+y \hat{j}+z \hat{k})}{x^{2}+y^{2}+z^{2}}$

Q4 Find a unit normal vector to the surface $z^{2}=x^{2}+y^{2}$ at the point $(1,0,-1)$. Ans. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{k})$

Lecture 37(II)

Directional Derivatives

miet

Directional Derivatives

Directional Derivative

Let $f(x, y, z)$ be a scalar valued function, directional derivative of $f(x, y, z)$ at the point \vec{a} in the direction of a vector \vec{b} is given by

Directional derivative $=(\nabla f)_{a t \vec{b}} \cdot \widehat{a}$
\widehat{a} is the unit vector of the vector \vec{a}.

Example 1

What is the directional derivative of the function $x y^{2}+y z^{8}$ at the point $(2,-1,1)$ in the direction of the vector $\hat{i}+2 \hat{j}+2 \hat{k}$?

Solution

$$
\circ(x, y, z)=x y^{2}+y z^{3}
$$

Gradient of ϕ

$$
\begin{aligned}
& =\nabla \phi=\hat{i} \frac{\partial \phi}{\partial x}+\hat{j} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z} \\
& =\hat{i} y^{2}+\hat{j}\left(2 x y+z^{3}\right)+\hat{k}\left(3 y z^{2}\right)
\end{aligned}
$$

$$
\text { Vo at }(2,-1,1)=\hat{i}-3 \hat{j}-3 \hat{k}
$$

If \hat{n} is a unit vector in the direction of $\hat{i}+2 \hat{j}+2 \hat{k}$, then $\hat{n}=\frac{\hat{i}+2 \hat{j}+2 \hat{k}}{\sqrt{1+4+4}}=\frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k})$
\therefore Directional derivative of the given function ϕ at $(2,-1,1)$ in the direction of

$$
\begin{aligned}
\hat{i}+2 \hat{j}+2 \hat{k} & =[\nabla\rangle \text { at }(2,-1,1)] \cdot \hat{n} \\
& =(\hat{i}-3 \hat{j}-3 \hat{k}) \cdot \frac{1}{3}(\hat{i}+2 \hat{j}+2 \hat{k})=\frac{1-6-6}{3}=-\frac{11}{3}
\end{aligned}
$$

Example 2

Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \hat{i}-\hat{j}-2 \hat{k}$. Find the greatest rate of increase of ϕ.

Solution

Here, $\quad \phi(x, y, z)=x^{2} y z+4 x z^{2}$
Now,

$$
\begin{aligned}
\nabla \phi & =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x^{2} y z+4 x z^{2}\right) \\
& =\left(2 x y z+4 z^{2}\right) \hat{i}+\left(x^{2} z\right) \hat{j}+\left(x^{2} y+8 x z\right) \hat{k}
\end{aligned}
$$

$\nabla \phi \quad$ at $(1,-2,1)=\left\{2(1)(-2)(1)+4(1)^{2}\right\} \hat{i}+(1 \times 1) \hat{j}+\{1(-2)+8(1)(1)\} \hat{k}$

$$
=(-4+4) \hat{i}+\hat{j}+(-2+8) \hat{k}=\hat{j}+6 \hat{k}
$$

Let

$$
\hat{a}=\text { unit vector }=\frac{2 \hat{i}-\hat{j}-2 \hat{k}}{\sqrt{4+1+4}}=\frac{1}{3}(2 \hat{i}-\hat{j}-2 \hat{k})
$$

miet

$$
\hat{a}=\text { unit vector }=\frac{2 \hat{i}-\hat{j}-2 \hat{k}}{\sqrt{4+1+4}}=\frac{1}{3}(2 \hat{i}-\hat{j}-2 \hat{k})
$$

So, the required directional derivative at $(1,-2,1)$

$$
=\nabla \phi \cdot \hat{a}=(\hat{j}+6 \hat{k}) \cdot \frac{1}{3}(2 \hat{i}-\hat{j}-2 \hat{k})=\frac{1}{3}(-1-12)=\frac{-13}{3}
$$

Greatest rate of increase of $\phi=|\hat{j}+6 \hat{k}|=\sqrt{1+36}$

$$
=\sqrt{37}
$$

Example 3

Find the directional derivative of the function $f=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of the line $P Q$ where Q is the point $(5,0,4)$.

In what direction will it be maximum ? Find also the magnitude of this maximum.

Solution

We have $\nabla f=\hat{i} \frac{\partial f}{\partial x}+\hat{j} \frac{\partial f}{\partial y}+\hat{k} \frac{\partial f}{\partial z}=2 x \hat{i}-2 y \hat{j}+4 z \hat{k}=2 \hat{i}-4 \hat{j}+12 \hat{k}$ at $\mathrm{P}(1,2,3)$
Also

$$
\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}}=(5 \hat{i}+4 \hat{k})-(\hat{i}+2 \hat{j}+3 \hat{k})=4 \hat{i}-2 \hat{j}+\hat{k}
$$

If \hat{n} is a unit vector in the direction $\overrightarrow{\mathrm{PQ}}$, then $\hat{n}=\frac{4 \hat{i}-2 \hat{j}+\hat{k}}{\sqrt{16+4+1}}=\frac{1}{\sqrt{21}}(4 \hat{i}-2 \hat{j}+\hat{k})$

miet

\therefore Directional derivative of f in the direction $\overrightarrow{\mathrm{PQ}}=(\nabla f) \cdot \hat{n}$

$$
\begin{aligned}
& =(2 \hat{i}-4 \hat{j}+12 \hat{k}) \cdot \frac{1}{\sqrt{21}}(4 \hat{i}-2 \hat{j}+\hat{k})=\frac{1}{\sqrt{21}}[2(4)-4(-2)+12(1)] \\
& =\frac{28}{\sqrt{21}}=\frac{4}{3} \sqrt{21}
\end{aligned}
$$

The directional derivative of f is maximum in the direction of the normal to the given surface i.e., in the direction of $\nabla f=2 \hat{i}-4 \hat{j}+12 \hat{k}$

The maximum value of this directional derivative $=|\nabla f|$

$$
=\sqrt{(2)^{2}+(-4)^{2}+(12)^{2}}=\sqrt{164}=2 \sqrt{41} .
$$

Example 4

Find the directional derivative of $\phi=e^{2 x} \cos y z$ at the origin in the direction of the tangent to the curve $x=a \sin t, y=a \cos t, z=a t a t=\frac{\pi}{4}$.

Solution

$$
\begin{aligned}
& \text { Gradient of } \phi=\nabla \phi=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(e^{2 x} \cos y z\right) \\
&=\hat{i}\left(2 e^{2 x} \cos y z\right)+\hat{j}\left(-e^{2 x} z \sin y z\right)+\hat{k}\left\{e^{2 x}(-\sin y z) y\right\}
\end{aligned}
$$

At the origin i-e., when

$$
\begin{aligned}
x & =0, y=0, z=0 . \\
\nabla \phi & =\hat{i}(2)=2 \hat{i}
\end{aligned}
$$

miet

Equation of the curve is $\quad x=a \sin t, y=a \cos t, z=a t$ Any point on the curve is $\vec{r}=\hat{i}(a \sin t)+\hat{j}(\alpha \cos t)+\hat{h}(a t)$

Direction of the tangent is given by $=\frac{d \vec{r}}{d t}=(a \cos t) \hat{i}-(a \sin t) \hat{j}+a \hat{k}$ At $t=\frac{\pi}{4}$, direction of tangent $=\frac{a}{\sqrt{2}} \hat{i}-\frac{a}{\sqrt{2}} \hat{j}+a \hat{h}$
$\hat{n}=$ unit direction of the tangent

$$
=\frac{\frac{a}{\sqrt{2}} \hat{i}-\frac{a}{\sqrt{2}} \hat{j}+a \hat{k}}{\sqrt{\frac{a^{2}}{2}+\frac{a^{2}}{2}+a^{2}}}=\frac{\frac{a}{\sqrt{2}}(\hat{i}-\hat{j}+\sqrt{2} \hat{k})}{\sqrt{2} a}=\frac{1}{2}(\hat{i}-\hat{j}+\sqrt{2} \hat{h})
$$

miet

Directional derivative of ϕ at $(0,0,0)$ in the direction of tangent at $t=\frac{\pi}{4}$ is $\left.=\nabla\right\rangle \cdot \hat{n}$ at

$$
(0,0,0), \quad=2 \hat{i} \cdot \frac{1}{2}(\hat{i}-\hat{j}+\sqrt{2} \hat{k})=1
$$

Example 5

Find the directional derivative of $\nabla \cdot(\nabla f)$ at the point $(1,-2,1)$ in the direction of the normal to the surface $x y^{2} z=3 x+z^{2}$, where $f=2 x^{3} y^{2} z^{4}$.

Solution

Here, we have

$$
\begin{aligned}
f= & 2 x^{3} y^{2} z^{4} \\
\nabla f & =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(2 x^{3} y^{2} z^{4}\right)=6 x^{2} y^{2} z^{4} \hat{i}+4 x^{3} y z^{4} \hat{j}+8 x^{3} y^{2} z^{3} \hat{k} \\
\nabla \cdot(\nabla f) & =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(6 x^{2} y^{2} z^{4} \hat{i}+4 x^{3} y z^{4} \hat{j}+8 x^{3} y^{2} z^{3} \hat{k}\right) \\
& =12 x y^{2} z^{4}+4 x^{3} z^{4}+24 x^{3} y^{2} z^{2}
\end{aligned}
$$

miet

Gradient of $\nabla \cdot(\nabla f)$

$$
\begin{aligned}
& =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(12 x y^{2} z^{4}+4 x^{3} z^{4}+24 x^{3} y^{2} z^{2}\right) \\
& =\left(12 y^{2} z^{4}+12 x^{2} z^{4}+72 x^{2} y^{2} z^{2}\right) \hat{i}+(24 x y z 4+48 x 3 y z 2) \hat{j} \\
& \quad+\left(48 x y^{2} z^{3}+16 x^{3} z^{3}+48 x^{3} y^{2} z\right) \hat{k}
\end{aligned}
$$

Gradient of $\nabla \cdot(\nabla f)$ at $(1,-2,1)=(48+12+288) \hat{i}+(-48-96) \hat{j}+(192+16+192) \hat{k}$

$$
=348 \hat{i}-144 \hat{j}+400 \hat{k}
$$

Normal to $\left(x y^{2} z-3 x-z^{2}\right)=\nabla\left(x y^{2} z-3 x-z^{2}\right)$

$$
\begin{aligned}
& =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x y^{2} z-3 x-z^{2}\right) \\
& =\left(y^{2} z-3\right) \hat{i}+(2 x y z) \hat{j}+\left(x y^{2}-2 z\right) \hat{k}
\end{aligned}
$$

Normal at $(1,-2,1)=\hat{i}-4 \hat{j}+2 \hat{k}$

miet

Unit Normal vector $=\frac{\hat{i}-4 \hat{j}+2 \hat{k}}{\sqrt{1+16+4}}=\frac{1}{\sqrt{21}}(\hat{i}-4 \hat{j}+2 \hat{k})$
Directional derivative in the direction of normal

$$
\begin{aligned}
& =(348 \hat{i}-144 \hat{j}+400 \hat{k}) \frac{1}{\sqrt{21}}(\hat{i}-4 \hat{j}+2 \hat{k}) \\
& =\frac{1}{\sqrt{21}}(348+576+800)=\frac{1724}{\sqrt{21}}
\end{aligned}
$$

Q.z: \rightarrow Find the directional derivative of v^{2}, where $\bar{\nu}=x y^{2} \hat{\imath}+z y^{2} \hat{\jmath}+x \hat{\hat{k}}$ at the point $(2,0,3)$ in the clirection of the outward normal to the sphere $x^{2}+y^{2}+z^{2}=14$ at the point $(3,2,1)$.
Sol init $\quad \vec{v}=x y^{2} \hat{i}+2 y^{2} \hat{j}+x z^{2} \hat{k}$ then $v^{2}=x^{2} y^{4}+z^{2} y^{4}+x^{2} z^{4} \equiv f$
Now

$$
\begin{aligned}
\nabla f & =\left(\hat{\imath} \frac{2}{2 x}+\hat{\jmath} \frac{2}{2 y}+\hat{k} \frac{2}{2 z}\right)\left(x^{2} y^{4}+z^{2} y^{4}+x^{2} z^{4}\right) \\
& =\hat{\imath}\left(2 x y^{4}+2 x z^{4}\right)+\hat{\jmath}\left(4 x^{2} y^{3}+4 z^{2} y^{3}\right)+\hat{k}\left(2 z y^{4}+4 x^{2} z^{3}\right)
\end{aligned}
$$

At point $(2,0,3), \nabla f=324 \hat{i}+432 \hat{k}$
Normal to the sphere $x^{2}+y^{2}+z^{2}=14 \cong \phi$ ic

$$
\nabla \phi=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}+z^{2}-14\right)=2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k}
$$

At $(3,2,1) \quad \nabla \phi=6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}$

Normal to the sphere $x^{2}+y^{2}+z^{2}=14 \cong \phi$ ic

$$
\nabla \phi=\left(\hat{\imath} \frac{2}{2 x}+\hat{\jmath} \frac{2}{\partial y}+\hat{k} \frac{2}{2 z}\right)\left(x^{2}+y^{2}+z^{2}-14\right)=2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k}
$$

At $(3,2,1) \quad \nabla \phi=6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}$
If \hat{n} is a unit vector in outward normal to the sphere then $\hat{n}=\frac{6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}}{\sqrt{36+16+4}}=\frac{1}{\sqrt{56}}(6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k})$
\therefore Directional derivative of f in the outward normal to the

$$
\begin{aligned}
\text { sphere } & =\nabla f \cdot \hat{n} \\
& =(324 \hat{\imath}+432 \hat{k}) \frac{1}{\sqrt{56}}(6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k})=\frac{1944+864}{\sqrt{56}}=\frac{1404}{\sqrt{14}}
\end{aligned}
$$

Q.2: \rightarrow Find the elirectional derivative of $\phi=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$ at the point $(3,1,2)$ in the direction of the vector $y z i+2 x y)$
Sold: $\phi=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ $+x y$ 食.

$$
\begin{aligned}
\nabla \phi & =\left(\hat{i} \frac{2}{2 x}+j^{9} \frac{2}{2 y}+\hat{k} \frac{2}{2 z}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2} \\
& =\hat{\imath}\left\{-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(2 x)\right\}+\hat{j}\left\{\frac{-1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(2 y)\right\} \\
& +\hat{k}\left\{\frac{-1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(2 z)\right\} \\
& =-\frac{(x \hat{i}+y \hat{j}+z \hat{k})}{\left.\left(x^{2}+y^{2}+z^{2}\right)\right)^{3 / 2}}=-\frac{3 \hat{\imath}+\hat{j}+2 \hat{k}}{14 \sqrt{14}} \text { at }(3,1,2)
\end{aligned}
$$

Let \hat{a} be the unit vector in the given alirection, then

$$
\hat{e}=\frac{y z \hat{\imath}+z x \hat{\jmath}+x y \hat{k}}{\sqrt{y^{2} z^{2}+z^{2} x^{2}+x^{2} y^{2}}}=\frac{2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}}{7} \text { at }(3,1,2)
$$

\therefore Directional derivative

$$
\begin{aligned}
& =\frac{2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}}{7}\left(-\frac{3 \hat{\imath}+\hat{\jmath}+2 \hat{k}}{14 \sqrt{14}}\right) \\
& =-\frac{6+6+6}{7.14 \sqrt{14}}=-\frac{9}{49 \sqrt{14}} .
\end{aligned}
$$

Q.3: \rightarrow Find the directional derivative of $\left(\frac{1}{r^{2}}\right)$ in the direction of \vec{r}, where $\vec{r}=\hat{i} x+\jmath^{\prime} y+\hat{k} z$.
Sol: $\nabla\left(\frac{1}{r^{2}}\right)=\frac{2}{r^{3}} \hat{r}=-\frac{2}{r^{4}} \cdot \vec{r}$

$$
\left(\because \hat{r}=\frac{\vec{r}}{|r|}\right)
$$

Let \hat{e}_{i} be the unit vector in the direction of \vec{r} then $\hat{a}_{1}=\vec{r}=\frac{\vec{r}}{r}$

$$
\therefore \text { Directional derivative }=\nabla\left(\frac{1}{r^{2}}\right) \cdot \hat{a}=-\frac{2}{r^{4}} \cdot \vec{r} \cdot \frac{\vec{r}}{r}=\frac{-2}{r^{3}}
$$

Q.4.: \rightarrow find the directional derivative of $\phi=5 x^{2} y-5 y^{2} z+\frac{5}{2} z^{2} x$ at the point $P(1,1,1)$ in the direction of the line

$$
\frac{x-1}{2}=\frac{y-3}{-2}=\frac{z}{1} .
$$

Sol: \rightarrow

$$
\begin{aligned}
& \phi=5 x^{2} y-5 y^{2} z+\frac{5}{2} z^{2} x \\
& \therefore \quad \text { grad } \phi=\left(\hat{\imath} \frac{2}{2 x}+\hat{\jmath} \frac{2}{2 y}+\hat{k} \frac{2}{2 z}\right)\left(5 x^{2} y-5 y^{2} z+\frac{5}{2} z^{2} x\right) \\
&=\left(10 x y+\frac{5}{2} z^{2}\right) \hat{\imath}+\left(5 x^{2}-10 y z\right) \jmath^{2}+\left(-5 y^{2}+5 z x\right) \hat{k} \\
&= \frac{25}{2} \hat{\imath}-5 \hat{\jmath} \quad \text { at }(1,1,1)
\end{aligned}
$$

Here $\quad \hat{a}^{2}=\frac{2 \hat{\imath}-2 \hat{\jmath}+\hat{k}}{3}$
\therefore Directional derivative $=($ grad $\phi) \cdot \hat{a}$

$$
\begin{aligned}
& =\left(\frac{25}{2} \hat{\imath}-5 \hat{\jmath}\right) \cdot\left(\frac{2}{3} \hat{\imath}-\frac{2}{3} \hat{\jmath}+\frac{1}{3} \hat{k}\right) \\
& =\frac{25}{3}+\frac{10}{3}=\frac{35}{3} .
\end{aligned}
$$

Q.5: \rightarrow Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$. Find also the greatest rate of increase of ϕ.
Sol: \rightarrow

$$
\begin{aligned}
& \therefore \quad \phi(x, y, z)=x^{2} y z+4 x z^{2} \\
& \therefore \nabla \phi
\end{aligned}=\left(\hat{\imath} \frac{2}{2 x}+j^{2} \frac{2}{2 y}+\hat{k} \frac{2}{2 z}\right)\left(x^{2} y z+4 x z^{2}\right) .
$$

$$
\text { At }(1,-2,1), \quad \nabla \phi=\hat{\jmath}+6 \hat{k}
$$

If \hat{n} is a unit vector in the direction of $2 \hat{\imath}-\hat{j}-2 \hat{k}$, then

$$
\hat{n}=\frac{2 \hat{\imath}-\hat{\jmath}-2 \hat{k}}{\sqrt{4+1+4}}=\frac{1}{3}(2 \hat{\imath}-\hat{\jmath}-2 \hat{k})
$$

So the required directional derivative at $(1,-2,1)$

$$
=\nabla \phi \cdot \hat{n}=(\hat{\jmath}+6 \hat{k}) \cdot \frac{1}{3}(2 \hat{\imath}-\hat{\jmath}-2 \hat{k})=\frac{-13}{3}
$$

Greatest rate of increase of $\phi=|\hat{\jmath}+6 \hat{k}|=\sqrt{1+36}=\sqrt{37}$
Q.z: \rightarrow Find the directional derivative of v^{2}, where $\bar{\nu}=x y^{2} \hat{\imath}+z y^{2} \hat{\jmath}+x \hat{\hat{k}}$ at the point $(2,0,3)$ in the clirection of the outward normal to the sphere $x^{2}+y^{2}+z^{2}=14$ at the point $(3,2,1)$.
Sol init $\quad \vec{v}=x y^{2} \hat{i}+2 y^{2} \hat{j}+x z^{2} \hat{k}$ then $v^{2}=x^{2} y^{4}+z^{2} y^{4}+x^{2} z^{4} \equiv f$
Now

$$
\begin{aligned}
\nabla f & =\left(\hat{\imath} \frac{2}{2 x}+\hat{\jmath} \frac{2}{2 y}+\hat{k} \frac{2}{2 z}\right)\left(x^{2} y^{4}+z^{2} y^{4}+x^{2} z^{4}\right) \\
& =\hat{\imath}\left(2 x y^{4}+2 x z^{4}\right)+\hat{\jmath}\left(4 x^{2} y^{3}+4 z^{2} y^{3}\right)+\hat{k}\left(2 z y^{4}+4 x^{2} z^{3}\right)
\end{aligned}
$$

At point $(2,0,3), \nabla f=324 \hat{i}+432 \hat{k}$
Normal to the sphere $x^{2}+y^{2}+z^{2}=14 \cong \phi$ ic

$$
\nabla \phi=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}+z^{2}-14\right)=2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k}
$$

At $(3,2,1) \quad \nabla \phi=6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}$

Normal to the sphere $x^{2}+y^{2}+z^{2}=14 \cong \phi$ ic

$$
\nabla \phi=\left(\hat{\imath} \frac{2}{2 x}+\hat{\jmath} \frac{2}{\partial y}+\hat{k} \frac{2}{2 z}\right)\left(x^{2}+y^{2}+z^{2}-14\right)=2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k}
$$

At $(3,2,1) \quad \nabla \phi=6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}$
If \hat{n} is a unit vector in outward normal to the sphere then $\hat{n}=\frac{6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}}{\sqrt{36+16+4}}=\frac{1}{\sqrt{56}}(6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k})$
\therefore Directional derivative of f in the outward normal to the

$$
\begin{aligned}
\text { sphere } & =\nabla f \cdot \hat{n} \\
& =(324 \hat{\imath}+432 \hat{k}) \frac{1}{\sqrt{56}}(6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k})=\frac{1944+864}{\sqrt{56}}=\frac{1404}{\sqrt{14}}
\end{aligned}
$$

Q.2: \rightarrow Find the elirectional derivative of $\phi=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$ at the point $(3,1,2)$ in the direction of the vector $y z i+2 x y)$
Sold: $\phi=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ $+x y$ 食.

$$
\begin{aligned}
\nabla \phi & =\left(\hat{i} \frac{2}{2 x}+j^{9} \frac{2}{2 y}+\hat{k} \frac{2}{2 z}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2} \\
& =\hat{\imath}\left\{-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(2 x)\right\}+\hat{j}\left\{\frac{-1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(2 y)\right\} \\
& +\hat{k}\left\{\frac{-1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(2 z)\right\} \\
& =-\frac{(x \hat{i}+y \hat{j}+z \hat{k})}{\left.\left(x^{2}+y^{2}+z^{2}\right)\right)^{3 / 2}}=-\frac{3 \hat{\imath}+\hat{j}+2 \hat{k}}{14 \sqrt{14}} \text { at }(3,1,2)
\end{aligned}
$$

Let \hat{a} be the unit vector in the given alirection, then

$$
\hat{e}=\frac{y z \hat{\imath}+z x \hat{\jmath}+x y \hat{k}}{\sqrt{y^{2} z^{2}+z^{2} x^{2}+x^{2} y^{2}}}=\frac{2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}}{7} \text { at }(3,1,2)
$$

\therefore Directional derivative

$$
\begin{aligned}
& =\frac{2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}}{7}\left(-\frac{3 \hat{\imath}+\hat{\jmath}+2 \hat{k}}{14 \sqrt{14}}\right) \\
& =-\frac{6+6+6}{7.14 \sqrt{14}}=-\frac{9}{49 \sqrt{14}} .
\end{aligned}
$$

Q.3: \rightarrow Find the directional derivative of $\left(\frac{1}{r^{2}}\right)$ in the direction of \vec{r}, where $\vec{r}=\hat{i} x+\jmath^{\prime} y+\hat{k} z$.
Sol: $\nabla\left(\frac{1}{r^{2}}\right)=\frac{2}{r^{3}} \hat{r}=-\frac{2}{r^{4}} \cdot \vec{r}$

$$
\left(\because \hat{r}=\frac{\vec{r}}{|r|}\right)
$$

Let \hat{e}_{i} be the unit vector in the direction of \vec{r} then $\hat{a}_{1}=\vec{r}=\frac{\vec{r}}{r}$

$$
\therefore \text { Directional derivative }=\nabla\left(\frac{1}{r^{2}}\right) \cdot \hat{a}=-\frac{2}{r^{4}} \cdot \vec{r} \cdot \frac{\vec{r}}{r}=\frac{-2}{r^{3}}
$$

Q.4.: \rightarrow find the directional derivative of $\phi=5 x^{2} y-5 y^{2} z+\frac{5}{2} z^{2} x$ at the point $P(1,1,1)$ in the direction of the line

$$
\frac{x-1}{2}=\frac{y-3}{-2}=\frac{z}{1} .
$$

Sol: \rightarrow

$$
\begin{aligned}
& \phi=5 x^{2} y-5 y^{2} z+\frac{5}{2} z^{2} x \\
& \therefore \quad \text { grad } \phi=\left(\hat{\imath} \frac{2}{2 x}+\hat{\jmath} \frac{2}{2 y}+\hat{k} \frac{2}{2 z}\right)\left(5 x^{2} y-5 y^{2} z+\frac{5}{2} z^{2} x\right) \\
&=\left(10 x y+\frac{5}{2} z^{2}\right) \hat{\imath}+\left(5 x^{2}-10 y z\right) \jmath^{2}+\left(-5 y^{2}+5 z x\right) \hat{k} \\
&= \frac{25}{2} \hat{\imath}-5 \hat{\jmath} \quad \text { at }(1,1,1)
\end{aligned}
$$

Here $\quad \hat{a}^{2}=\frac{2 \hat{\imath}-2 \hat{\jmath}+\hat{k}}{3}$
\therefore Directional derivative $=($ grad $\phi) \cdot \hat{a}$

$$
\begin{aligned}
& =\left(\frac{25}{2} \hat{\imath}-5 \hat{\jmath}\right) \cdot\left(\frac{2}{3} \hat{\imath}-\frac{2}{3} \hat{\jmath}+\frac{1}{3} \hat{k}\right) \\
& =\frac{25}{3}+\frac{10}{3}=\frac{35}{3} .
\end{aligned}
$$

Q.5: \rightarrow Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$. Find also the greatest rate of increase of ϕ.
Sol: \rightarrow

$$
\begin{aligned}
& \therefore \quad \phi(x, y, z)=x^{2} y z+4 x z^{2} \\
& \therefore \nabla \phi
\end{aligned}=\left(\hat{\imath} \frac{2}{2 x}+j^{2} \frac{2}{2 y}+\hat{k} \frac{2}{2 z}\right)\left(x^{2} y z+4 x z^{2}\right) .
$$

$$
\text { At }(1,-2,1), \quad \nabla \phi=\hat{\jmath}+6 \hat{k}
$$

If \hat{n} is a unit vector in the direction of $2 \hat{\imath}-\hat{j}-2 \hat{k}$, then

$$
\hat{n}=\frac{2 \hat{\imath}-\hat{\jmath}-2 \hat{k}}{\sqrt{4+1+4}}=\frac{1}{3}(2 \hat{\imath}-\hat{\jmath}-2 \hat{k})
$$

So the required directional derivative at $(1,-2,1)$

$$
=\nabla \phi \cdot \hat{n}=(\hat{\jmath}+6 \hat{k}) \cdot \frac{1}{3}(2 \hat{\imath}-\hat{\jmath}-2 \hat{k})=\frac{-13}{3}
$$

Greatest rate of increase of $\phi=|\hat{\jmath}+6 \hat{k}|=\sqrt{1+36}=\sqrt{37}$

Practice Questions

1. Find the directional derivative of the function $\phi=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the normal to the surface $x \log z-y^{2}+$ $4=0$ at $(-1,2,1)$.

Ans: $\quad-3 \sqrt{2}$
2. Find the directional derivative of $\frac{1}{r}$ in the direction \bar{r} where $\bar{r}=x \hat{i}+y \hat{j}+z \hat{k}$.

Ans:

$$
\frac{1}{r^{2}}
$$

Practice Questions

3. Find the directional derivative of $f(x, y, z)=x y z$ at the point $P(1,-1,-2)$ in the direction of the vector $(2 \hat{i}-2 \hat{j}+2 \hat{k})$.
4. Find the directional derivative of the scalar function of $f(x, y, z)=x y z$ in the direction of the outer normal to the surface $z=x y^{\prime}$ at the point $(3,1,3)$.

Ans. $\frac{27}{\sqrt{11}}$

miet

Lecture 38

Divergence of a Vector Point Function

Definition

miet

The divergence of a vector point function \vec{F} is denoted by $\operatorname{div} \vec{F}$ and is defined as below.
Let

$$
\begin{aligned}
\vec{F} & =F_{1} \hat{i}+F_{2} \hat{j}+F_{3} \hat{k} \\
\operatorname{div} \vec{F} & =\vec{\nabla} \cdot \vec{F}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot\left(\hat{i} F_{1}+\hat{j} F_{2}+\hat{k} F_{3}\right)=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
\end{aligned}
$$

$\operatorname{div} \vec{F}$ is a scalar function

miet

Physical interpretation of Divergence of a Vector Function

Consider a fllid having density $\rho=\rho(x, y, z, t)$ and velocity $\vec{v}=\vec{v}(x, y, z, t)$ at a point (x, y, z) at time t. Let $\vec{V}=\rho \vec{v}$, then \vec{V} is a vector having the same direction as \vec{v} and magnitude $\rho|\vec{v}|$. It is known as fux. Its direction gives the direction of the fluid flow, and its magnitude gives the mass of the fluid crossing per unit time a unit area placed perpendicular to the direction of flow.

Consider the motion of the fluid having velocity $\vec{V}=V_{x} \hat{i}+V_{y} \hat{j}+V_{z} \hat{k}$ at a point $P(x, y, z)$. Consider a small parallelopiped with edges $\delta x, \delta y$, δz parallel to the axes with one of its corners at P.

miet

The mass of the fluid entering through the face F_{1} per unit time is $\mathrm{V}_{y} \delta x \delta z$ and that flowing out through the opposite face F_{2} is $\mathrm{V}_{y+\delta y} \delta x \delta z=\left(\mathrm{V}_{y}+\frac{\partial \mathrm{V}_{y}}{\partial y} \delta y\right) \delta x \delta z$ by using Taylor's series.
\therefore The net decrease in the mass of fluid flowing across these two faces

$$
=\left(\mathrm{V}_{y}+\frac{\partial \mathrm{V}_{y}}{\partial y} \delta y\right) \delta x \delta z-\mathrm{V}_{y} \delta x \delta z=\frac{\partial \mathrm{V}_{y}}{\partial y} \delta x \delta y \delta z
$$

Similarly, considering the other two pairs of faces, we get the total decrease in the mass of fluid inside the parallelopiped per unit time $=\left(\frac{\partial \mathrm{V}_{x}}{\partial x}+\frac{\partial \mathrm{V}_{y}}{\partial y}+\frac{\partial \mathrm{V}_{z}}{\partial z}\right) \delta x \delta y \delta z$.

miet

Dividing this by the volume $\delta x \delta y \delta z$ of the parallelopiped, we have the rate of loss of fluid per unit volume

$$
=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}=\operatorname{div} \vec{V}
$$

Hence div \vec{V} gives the rate of oufflow per unit volume at a point of the fluid.

miet

Thus it can be concluded that
$\operatorname{div} \overrightarrow{\mathrm{V}}$ gives the rate of outflow per unit volume at a point of the fluid. If the fluid is incompressible, there can be no gain or loss in the volume element. Hence $\operatorname{div} \overrightarrow{\mathrm{V}}=0$ and $\overrightarrow{\mathrm{V}}$ is called a solenoidal vector function. Which is known in Hydrodynamics as the equation of continuity for incompressible fluids. Note : Vectors having zero divergence are called solenoidal and are useful in various branches of physics and Engineering.

Example 1

Find the divergence of $\vec{V}=(x y z) \hat{i}+\left(3 x^{2} y\right) \hat{j}+\left(x z^{2}-y^{2} z\right) \hat{k}$ at the point $(2,-1,1)$.

Solution

$$
\text { Div } \begin{aligned}
\overrightarrow{\mathrm{V}} & =\frac{\partial}{\partial x}(x y z)+\frac{\partial}{\partial y}\left(3 x^{2} y\right)+\frac{\partial}{\partial z}\left(x z^{2}-y^{2} z\right) \\
& =y z+3 x^{2}+2 x z-y^{2}=-1+12+4-1=14 \text { at }(2,-1,1)
\end{aligned}
$$

Example 2

If $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+\mathrm{y} \hat{\mathbf{j}}+z \hat{\mathbf{k}}$, Prove that
(i) $\operatorname{div} \overrightarrow{\mathrm{r}}=3$ i.e, $\nabla \cdot \overrightarrow{\mathrm{r}}=3$
(ii) $\operatorname{div}(\vec{a} \times \vec{r})=0$

Solution

(i) $\operatorname{div} \vec{r}=\nabla \cdot \vec{r}$

$$
\begin{aligned}
& =\left(\hat{\mathrm{i}} \frac{\partial}{\partial x}+\hat{\mathbf{j}} \frac{\partial}{\partial y}+\hat{\mathbf{k}} \frac{\partial}{\partial z}\right) \cdot(x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}) \\
& =\frac{\partial \mathrm{x}}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z} \\
& =1+1+1 \\
& =3
\end{aligned}
$$

(ii) $\Delta \cdot(\vec{a} \times \vec{r})=-\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot\left\{\hat{i}\left(a_{3} y-a_{2} z\right)-\hat{j}\left(a_{3} x-a_{1} z\right)+\hat{k}\left(a_{2} x-a_{1} y\right)\right\}$
$=-\frac{\partial}{\partial x}\left(a_{3} y-a_{2} z\right)+\frac{\partial}{\partial y}\left(a_{3} x-a_{1} z\right)-\frac{\partial}{\partial z}\left(a_{2} x-a_{1} y\right)$
$=0$
$\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$

Example 3

miet

$$
\text { If } \vec{v}=\frac{x \hat{i}+y \hat{j}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}} \text {, find the value of div } \vec{v} \text {. }
$$

Solution

$$
\begin{aligned}
& \text { We have, } \quad \vec{v}=\frac{x \hat{i}+y \hat{j}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& \operatorname{div} \vec{v}=\vec{\nabla} \cdot \vec{v}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot\left(\frac{x \hat{i}+y \hat{j}+z \hat{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}\right) \\
&=\frac{\partial}{\partial x} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}+\frac{\partial}{\partial y} \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}+\frac{\partial}{\partial z} \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}} \\
&=\frac{\left[\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}-x \cdot \frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}} \cdot 2 x\right]}{\left(x^{2}+y^{2}+z^{2}\right)}
\end{aligned}
$$

$$
+\frac{\left[\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}-y \cdot \frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}} \times 2 y\right]}{\left(x^{2}+y^{2}+z^{2}\right)}+\frac{\left[\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}-z \cdot \frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2} \cdot 2 z\right]}{\left(x^{2}+y^{2}+z^{2}\right)}
$$

$$
\begin{aligned}
& =\frac{\left(x^{2}+y^{2}+z^{2}\right)-x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{\left(x^{2}+y^{2}+z^{2}\right)-y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\frac{\left(x^{2}+y^{2}+z^{2}\right)-z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& =\frac{y^{2}+z^{2}+x^{2}+z^{2}+x^{2}+y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=\frac{2\left(x^{2}+y^{2}+z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=\frac{2}{\sqrt{\left(x^{2}+y^{2}+z^{2}\right)}}
\end{aligned}
$$

Example 4

Prove that a vector field $\vec{F}=\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}$ is solenoidal

Solution

A vector $\overrightarrow{\mathrm{F}}$ is said to be solenoidal if div $\overrightarrow{\mathrm{F}}=0$
Here div $\overline{\mathbf{F}}=\nabla . \overline{\mathrm{F}}$

$$
\begin{aligned}
& =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial x}+\hat{k} \frac{\partial}{\partial x}\right) \cdot\left\{\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}\right\} \\
& =\frac{\partial}{\partial x}\left(x^{2}-y^{2}+x\right)-\frac{\partial}{\partial y}(2 x y+y) \\
& =(2 x+1)-(2 x+1) \\
& =0 \\
& \Rightarrow \operatorname{div} \vec{F}=0
\end{aligned}
$$

Thus the given vector is solenoidal

If vector $\vec{F}=3 x \hat{i}+(x+y) \hat{j}-a z \hat{k}$ is solenoidal. Find a.

Solution

A vector \vec{F} is said to be solenoidal, if div $\vec{F}=0$
$\therefore \operatorname{div} \overrightarrow{\mathrm{F}}=\frac{\partial}{\partial \mathrm{x}}(3 \mathrm{x})+\frac{\partial}{\partial \mathrm{x}}(\mathrm{x}+\mathrm{y})+\frac{\partial}{\partial \mathrm{x}}(-\mathrm{az})$
$=3+1-\mathrm{a}=0$
$\therefore a=4$ Answer.

Example 6

If r and \vec{r} have their usual meanings, show that $\operatorname{div} r^{n} \vec{r}=(n+3) r^{n}$

Solution

Since $\vec{r}=(x \hat{i}+y \hat{j}+z \hat{k})$ so; we have $\mathbf{r}^{\mathrm{n}} \overrightarrow{\mathbf{r}}=\mathbf{r}^{\mathrm{n}} \times \hat{\mathrm{i}}+\mathbf{r}^{\mathrm{n}} \mathbf{y} \hat{\mathrm{j}}+\mathbf{r}^{\mathrm{n}} \boldsymbol{z} \hat{\mathbf{k}}$
$\therefore \operatorname{div} r^{n} \vec{r}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \cdot\left(r^{n} x \hat{i}+r^{n} y \hat{j}+r^{n} z \hat{k}\right)$
$=\frac{\partial}{\partial x}\left(r^{n} x\right)+\frac{\partial}{\partial y}\left(r^{n} y\right)+\frac{\partial}{\partial z}\left(r^{n} z\right)$
$=r^{n} .1+n r^{n-1} \frac{\partial r}{\partial x} x+r^{n} .1+n r^{n-1} \frac{\partial r}{\partial y} y+r^{n} .1+n r^{n-1} z \frac{\partial r}{\partial z}$

$$
\begin{aligned}
& =3 r^{n}+n r^{n-1}\left(x \frac{\partial r}{\partial x}+y \frac{\partial r}{\partial y}+z \frac{\partial r}{\partial z}\right) \\
& =3 r^{n}+n r^{n-1}\left(x \frac{x}{r}+y \frac{y}{r}+z \frac{z}{r}\right) \\
& =3 r^{n}+n r^{n-1}\left(\frac{x^{2}+y^{2}+z^{2}}{r}\right) \\
& =3 r^{n+n} r^{n} \\
& =(n+3) r^{n}
\end{aligned}
$$

Example 7

$$
\begin{aligned}
& \text { Find } \operatorname{div} \vec{F} \quad \text { where } F=\text { grad }\left(x^{3}+v^{3}+z^{3}-3 x y z\right) \text {. } \\
& \text { Ans. div } \vec{F}=6(x+y+z) \text {. }
\end{aligned}
$$

Q-6 Find the directional derivative of scalar function $f(x, y, z)=x y z$ at point $P(1,1,3)$ in the direction of the upnoard drawn normal to the sphere $x^{2}+y^{2}+z^{2}=11$ through the point P.
(2022-23)
solus:

$$
f=x y z^{u}
$$

Now,

$$
\nabla f=\left(\hat{\imath} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)(x y z)
$$

$$
=y z \hat{\imath}+x z \hat{\jmath}+x y \hat{k}
$$

at $\rho(1,1,3) \quad \nabla f=3 \hat{i}+3 \hat{j}+\hat{k}$
N Lormal to the sphere $x^{2}+y^{2}+z^{2}=11$

$$
\begin{gathered}
\nabla \phi=\left(\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}\right)\left(x^{2}+y^{2}+z^{2}-11\right) \\
=(2 x \hat{\imath}+2 y \hat{\jmath}+2 z \hat{k})
\end{gathered}
$$

At $P(1,1,3), \quad \forall \phi=2 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}$
If \hat{n} is a unit vector normal to the sphere
then

$$
\begin{aligned}
& \hat{r}=\frac{\nabla \phi}{1 \nabla \phi 1}=\frac{2 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}}{\sqrt{4+4+36}} \\
& =\frac{2 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}}{\sqrt{44}}=\frac{\hat{i}+\hat{\jmath}+3 \hat{k}}{\sqrt{11}}
\end{aligned}
$$

\therefore Directional derivative of of $\overline{11}$ the upward normal to the sphere $=f \nabla \vec{p} \cdot \hat{n}$

$$
\begin{aligned}
& =(3 \hat{\imath}+3 \hat{\jmath}+\hat{k})\left(\frac{\hat{\imath}+\hat{\jmath}+3 \hat{k}}{\sqrt{11}}\right) \\
& =\frac{3+3+3}{\sqrt{11}}=\frac{g}{\sqrt{11}}
\end{aligned}
$$

Practice Questions

1 Show that the vector $V=(x+3 y) \hat{i}+(y-3 z) \hat{j}+(x-2 z) \hat{k}$ is solenoidal. Find $\operatorname{div} \vec{F} \quad$ where $F=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.

Ans. $\operatorname{div} \vec{F}=6(x+y+z)$,

3 If $u=x^{2}+y^{2}+z^{2}$, and $\bar{r}=x \hat{i}+y \hat{j}+z \hat{k}$, then find div (ur$)$ in terms of u. Ans: $5 u$
4 If $r=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$, show that (i) $\operatorname{div}\left(\frac{\vec{r}}{|\vec{r}|^{3}}\right)=0$,

Q1 If $r=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$, show that (i) $\operatorname{div}\left(\frac{\vec{r}}{|\vec{r}|^{3}}\right)=0$,

Q2 If $u=x^{2}+y^{2}+z^{2}$, and $\bar{r}=x \hat{i}+y \hat{j}+z \hat{k}$, then find div (u $\left.\bar{r}\right)$ in terms of u.
Q3 Show that the vector $V=(x+3 y) \hat{i}+(y-3 z) \hat{j}+(x-2 z) \hat{k}$ is solenoidal.
Q4 A fluid motion is given by $\hat{V}=(y+z) \hat{\mathrm{i}}+(z+x) \hat{\mathfrak{j}}+(x+y) \hat{\mathrm{k}}$
Is motion possible for incompressible fluid?

miet

Lecture 39

Curl of a Vector Point Function \& Vector Identities

Curl of a Vector Point Function

The curl of a vector point function is a vector quantity if $\vec{V}=V_{1} \hat{i}+V_{2} \hat{j}+V_{3} \hat{k}$ Then
The curl (or rotation) of $\overrightarrow{\mathrm{V}}$ is denoted by curl $\overline{\mathrm{V}}$ and is defined as

$$
\begin{aligned}
& \operatorname{curl} \vec{V}=\nabla \times \bar{V}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \times\left(V_{1} \hat{i}+V_{2} \hat{j}+V_{3} \hat{k}\right) \\
& =\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\mathbf{V}_{1} & \mathbf{V}_{2} & \mathrm{~V}_{3}
\end{array}\right| \\
& =\hat{\mathbf{i}}\left(\frac{\partial V_{3}}{\partial y}-\frac{\partial V_{2}}{\partial z}\right)+\hat{\mathbf{i}}\left(\frac{\partial V_{1}}{\partial z}-\frac{\partial V_{3}}{\partial x}\right)+\hat{\mathbf{k}}\left(\frac{\partial V_{2}}{\partial x}-\frac{\partial V_{1}}{\partial y}\right)
\end{aligned}
$$

Physical Interpretation

Consider a rigid body rotating about a given axis through O with uniform angular velocity ω.
Let $\vec{\omega}=\omega_{1} \hat{i}+\omega_{2} \hat{j}+\omega_{3} \bar{k}$
The linear velocity \vec{V} of any point $P(x, y, z)$ on the rigid body is given by $\overrightarrow{\mathrm{V}}=\overrightarrow{\boldsymbol{\omega}} \times \overrightarrow{\mathrm{r}}$
Where $\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}} x+\hat{\mathbf{j}} y+\hat{\mathbf{k}} z$ is the position vector of P
$\therefore \overrightarrow{\mathrm{V}}=\vec{\omega} \times \overrightarrow{\mathbf{r}}$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
\omega_{1} & \omega_{2} & \omega_{3} \\
\mathrm{x} & \mathrm{y} & \mathrm{z}
\end{array}\right| \\
& =\hat{\mathrm{i}}\left(\omega_{2} z-\omega_{3} y\right)+\hat{\mathrm{j}}\left(\omega_{3} x-\omega_{1} z\right)+\hat{\mathrm{k}}\left(\omega_{1} y-\omega_{2} x\right)
\end{aligned}
$$

$\because \operatorname{curl} \overrightarrow{\mathrm{V}}=\operatorname{curl}(\vec{\omega} \times \overrightarrow{\mathbf{r}})=\nabla \times(\vec{\omega} \times \overrightarrow{\mathbf{r}})$

$$
\begin{aligned}
& =\left|\begin{array}{lcc}
\hat{i} & \hat{j} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\omega_{2} z-\omega_{3} y & \omega_{3} \times-\omega_{1} z & \omega_{1} y-\omega_{2} \times
\end{array}\right| \\
& =\left(\omega_{1}+\omega_{1}\right) \hat{i}+\left(\omega_{2}+\omega_{2}\right) \hat{j}+\left(\omega_{3}+\omega_{3}\right) \hat{k} \\
& =2\left(\omega_{1} \hat{i}+\omega_{2} \hat{\mathbf{j}}+\omega_{3} \hat{k}\right)
\end{aligned}
$$

$\therefore \omega_{1}, \omega_{2}, \omega_{3}$ are constants
$=2 \overrightarrow{\mathrm{\omega}}$
$\therefore \vec{\omega}=\frac{1}{2} \operatorname{curl} \overrightarrow{\mathrm{~V}}$
Thus the angular velocity at any points is equal to half the curl of linear velocity at that point of the body.
Note : If curl $\overrightarrow{\mathrm{V}}=0$, then $\overline{\mathrm{V}}$ is said to be an irrotational vector, otherwise rotational. Also curl of a vector signifies rotation.

Example 1

miet

Find the curl of $\vec{v}=(x y z) \hat{i}+\left(3 x^{2} y\right) \hat{j}+\left(x z^{2}-y^{2} z\right) \hat{k}$ at $(2,-1,1)$

Solution

Here, we have

$$
\begin{aligned}
\vec{v}= & (x y z) \hat{i}+\left(3 x^{2} y\right) \hat{j}+\left(x z^{2}-y^{2} z\right) \hat{k} \\
\text { Curl } \cdot \bar{v}= & \left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y z & 3 x^{2} y & x z^{2}-y^{2} z
\end{array}\right|=-2 y z \hat{i}-\left(z^{2}-x y\right) \hat{j}+(6 x y-x z) \hat{k} \\
= & -2 y z \hat{i}+\left(x y-z^{2}\right) \hat{j}+(6 x y-x z) \hat{k}
\end{aligned}
$$

Curl at (2, -1, 1)

$$
=-2(-1)(1) \hat{i}+\{(2)(-1)-1\} \hat{j}+\{6(2)(-1)-2(1)\} \hat{k}=2 \hat{i}-3 \hat{j}-14 \hat{k}
$$

Example 2

If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, Prove that
(i) Curl $\vec{r}=\overrightarrow{0}$ i.e, $\nabla \times \vec{r}=\overrightarrow{0}$
(ii) $\operatorname{Curl}(\vec{r} \times \vec{a})=-2 \vec{a}$ i.e, $\nabla \times(\vec{r} \times \vec{a})=-2 \vec{a}$

Solution

(i) Curl $\vec{r}=\nabla \times \vec{r}$

$$
\begin{aligned}
& =\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right) \times(x \hat{i}+y \hat{j}+z \hat{k})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x & y & z
\end{array}\right| \\
& =\hat{i}\left(\frac{\partial z}{\partial y}-\frac{\partial y}{\partial z}\right)+\hat{j}\left(\frac{\partial x}{\partial z}-\frac{\partial z}{\partial x}\right)+\hat{k}\left(\frac{\partial y}{\partial x}-\frac{\partial x}{\partial y}\right)=\overrightarrow{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) Let us suppose that } \\
& \overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y_{\hat{\mathbf{j}}}+z \hat{\mathbf{k}} \\
& \text { and } \bar{a}=a_{1} \hat{i}+a_{2} \bar{j}+a_{3} \hat{k} \\
& \therefore \vec{r} \times \vec{a}=\left|\begin{array}{lll}
\hat{i} & \hat{\mathbf{i}} & \tilde{k} \\
\times & y & z \\
a_{1} & \mathbf{a}_{2} & a_{3}
\end{array}\right| \\
& =\hat{i}\left(a_{3 y}-a_{2}\right)-\hat{i}\left(a_{3} \times-a_{1} z\right)+\hat{k}\left(a_{2} \times-a_{11} y\right)
\end{aligned}
$$

Therefore, we have

$$
\nabla \times(\dot{r} \times \bar{a})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
a_{3} y-a_{2} z & a_{1} z-a_{3} \times & a_{2} \times-a_{1} y
\end{array}\right|
$$

$=\hat{i}\left(-a_{1}-a_{1}\right)-\hat{j}\left(a_{2}+a_{2}\right)+\hat{k}\left(-a_{3}-a_{3}\right)$
$=-2 a_{1} \hat{\mathbf{i}}-2 a_{2} \hat{\mathbf{j}}-2 a_{3} \hat{k}$
$=-2\left(a_{1} \hat{\mathbf{i}}+a_{2} \hat{\mathbf{i}}+a_{3} \hat{k}\right)$
$=-2 \mathrm{a}$

Example 3

A fluid motion is given by $\hat{V}=(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$, show that the motion is irrotational and hence find velocity potential.

Solution

$$
\begin{aligned}
& \text { We have } \vec{V}=(y+z) \hat{i}+(z+x) \hat{\mathrm{j}}+(x+y) \hat{\mathrm{k}} \\
& \text { Curl } \overrightarrow{\mathrm{V}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
\frac{\partial}{\partial x} & \cdot \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y+z & z+x & x+y
\end{array}\right|=(1-1) \hat{i}+(1-1) \hat{\mathrm{j}}+(1-1) \hat{\mathrm{k}} \quad=\overrightarrow{0}
\end{aligned}
$$

Hence \bar{V} is irrotational
Now, if ϕ is a scalar potential then, we have

$$
\begin{aligned}
& \overrightarrow{\mathrm{V}}=\nabla \phi \\
& \Rightarrow(\mathrm{y}+\mathrm{z}) \hat{\mathrm{i}}+(\mathrm{z}+\mathrm{x}) \hat{\mathrm{j}}+(\mathrm{x}+\mathrm{y}) \hat{\mathrm{k}}=\hat{\mathrm{i}} \frac{\partial \phi}{\partial x}+\hat{\mathrm{j}} \frac{\partial \phi}{\partial \mathrm{y}}+\hat{\mathrm{k}} \frac{\partial \phi}{\partial z}
\end{aligned}
$$

Equating the coefficients of $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$ we get

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=y+z, \frac{\partial \phi}{\partial y}=z+x \& \frac{\partial \phi}{\partial z}=x+y \\
& \text { Also } d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y+\frac{\partial \phi}{\partial z} d z \\
& =(y+z) d x+(z+x) d y+(x+y) d z \\
& =y d x+z d x+z d y+x d y+x d z+y d z \\
& =y d x+x d y+z d y+y d z+x d z+z d x \\
& =d(x y)+d(y z)+d(x z)
\end{aligned}
$$

Interating term by term we get $\phi=x y+y z+x z+$ constant

Example 4

miet

Find the constants a, b, c, so that

$$
\vec{F}=\hat{(}(x+2 y+a z) \hat{i}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k}
$$

is irrotational.

Solution

We have,

$$
\begin{aligned}
\nabla \times \vec{F} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
(x+2 y+a z) & (b x-3 y-z) & (4 x+c y+2 z)
\end{array}\right| \\
& =(c+1) \hat{i}-(4-a) \hat{j}+(b-2) \hat{k}
\end{aligned}
$$

miet

As \vec{F} is irrotational, $\nabla \times \vec{F}=\overrightarrow{0}$
i.e., $\quad(c+1) \hat{i}-(4-a) \hat{j}+(b-2) \hat{k}=0 \hat{i}+0 \hat{j}+0 \hat{k}$
$\therefore \quad c+1=0, \quad 4-a=0 \quad$ and $\quad b-2=0$
i.e., $a=4, \quad b=2, \quad c=-1$

Putting the values of a, b, c in (1), we get

$$
\vec{F}=(x+2 y+4 z) \hat{i}+(2 x-3 y-z) \hat{j}+(4 x-y+2 z) \hat{k}
$$

Vector Identities

miet

1. $\operatorname{div}(\mathbf{A}+\mathbf{B})=\operatorname{div} \mathbf{A}+\operatorname{div} \mathbf{B}$
2. curl $(\mathbf{A}+\mathbf{B})=$ curl $\mathbf{A}+\operatorname{curl} \mathbf{B}$
3. If A is a differentiable vector function and ϕ is a differentiable scalar function, then

$$
\operatorname{div}(\phi \mathbf{A})=(\operatorname{grad} \phi)-\mathbf{A}+\phi \operatorname{div} \mathbf{A}
$$

4. $\operatorname{curl}(\phi \mathbf{A})=(\operatorname{grad} \phi) \times \mathbf{A}+\phi \operatorname{curl} \mathbf{A}$
5. $\operatorname{div}(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot$ curl $\mathbf{A}-\mathbf{A} \cdot$ curl \mathbf{B}

Vector Identities

$$
\begin{aligned}
& \text { 6. } \nabla \times(A \times B)=(B \cdot \nabla) A-B(\nabla \cdot A)-(A \cdot \nabla) B+A(\nabla \cdot B) \\
& \text { 7. } \nabla \times(\nabla f)=0 \\
& \text { 8. } \nabla \cdot(\nabla \times \boldsymbol{A})=0 \\
& \text { 9. } \nabla^{2} f \triangleq \nabla \cdot(\nabla f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

Example 5

(i) Prove that the vector $f(r) \vec{r}$ is irrotational
(ii) Prove that the vector $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$ is irrotational

Solution

(i) $\operatorname{curl}\{f(r) \vec{r}\}=f(r) \operatorname{curl} \vec{r}+\{\operatorname{grad} f(r)\} \times \vec{r}$

$$
\begin{aligned}
& =\overrightarrow{\mathbf{0}}+f^{\prime}(r) \hat{r} \times \vec{r} \\
& =\frac{f^{\prime}(r)}{r}(\vec{r} \times \vec{r})=\overrightarrow{\mathbf{0}}
\end{aligned}
$$

Hence $f(r) \vec{r}$ is irrotational.
(ii)

$$
\left.\begin{array}{rl}
\operatorname{grad} f(r) & =f^{\prime}(r) \hat{r}=\frac{1}{r} f^{\prime}(r) \vec{r} \\
\operatorname{div}\{\operatorname{grad} f(r)\} & =\nabla^{2} f(r) \\
& =\operatorname{div}\left\{\frac{f^{\prime}(r)}{r} \vec{r}\right\}=\frac{f^{\prime}(r)}{r} \operatorname{div} \vec{r}+\operatorname{grad}\left\{\frac{f^{\prime}(r)}{r}\right\} \cdot \vec{r} \\
& =\frac{3}{r} f^{\prime}(r)+\left\{\frac{r f^{\prime \prime}(r)-f^{\prime}(r)}{r^{2}}\right\} \vec{r} \cdot \vec{r} \\
& =\frac{3}{r} f^{\prime}(r)+\left\{\frac{r f^{\prime \prime}(r)-f^{\prime}(r)}{r^{3}}\right\}(\vec{r} \cdot \vec{r}) \\
& =\frac{3}{r} f^{\prime}(r)+\left\{\frac{r f^{\prime \prime}(r)-f^{\prime}(r)}{r}\right\} \\
\Longrightarrow \quad \nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)
\end{array}\right\} \begin{aligned}
& \text { Now, } \quad \nabla^{2} \log r=-\frac{1}{r^{2}}+\frac{2}{r}\left(\frac{1}{r}\right)=\frac{1}{r^{2}}=\frac{1}{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

Q. in If $\vec{A}=\left(x z^{2} \hat{\imath}+2 y \hat{\jmath}-3 x z \hat{k}\right)$ and $\vec{B}=\left(3 x z \hat{\imath}+2 y 2 \hat{\jmath}-z^{2} \hat{k}\right)$.

Find the value of $[\vec{A} \times(\nabla \times \vec{B})] f[(\vec{A} \times \nabla) \times \vec{B}]$.
Sol ne (i) $[\vec{A} \times(\nabla \times \vec{B})]$

$$
\begin{align*}
\nabla \times \vec{B}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{2 x} & \frac{2}{2 y} & \frac{2}{\partial z} \\
3 x z & 2 y z & -z^{2}
\end{array}\right| & =\hat{i}[0-2 y]-\hat{\jmath}[0-3 x]+\hat{k}[0-0] \tag{2016-17}\\
& =-2 y \hat{\imath}+3 x \hat{\jmath}+0 \hat{k}
\end{align*}
$$

Now

$$
\begin{aligned}
{[\vec{A} \times(\nabla \times \vec{B})]=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
x z^{2} & 2 y & -3 x z \\
-2 y & 3 x & 0
\end{array}\right| } & =\hat{i}\left[0+9 x^{2} z\right]-\hat{j}[0-6 x y z] \\
& +\hat{k}\left[3 x^{2} z^{2}+4 y^{2}\right] \\
& =9 x^{2} z \hat{\imath}+6 x y z \hat{\jmath}+\left(3 x^{2} z^{2}+4 y^{2}\right) \hat{k}
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& {[(\vec{A} \times \nabla) \times \vec{B}] } \\
& \vec{A} \times \nabla=\left|\begin{array}{ccc}
\hat{\imath} & \hat{j} & \hat{k} \\
x z^{2} & 2 y & -3 x z \\
\frac{2}{2 x} & \frac{2}{2 y} & \frac{2}{2 z}
\end{array}\right|==\hat{\imath}[0+0]-\hat{j}[2 x z+3 z]+\hat{k}[0-0] \\
& {[(\vec{A} \times \nabla) \times \vec{B}]=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & -(2 x z+3 z) & 0 \\
3 x z & 2 y z & -z^{2}
\end{array}\right|=} {\left[z^{2}(2 x z+3 z)-0\right] \hat{\imath}-[0-0) \hat{k} \hat{j} } \\
&+[0+3 x z(2 x z+3 z)] \hat{k} \\
&=\left(2 x z^{3}+3 z^{3}\right) \hat{\imath}+\left(6 x^{2} z^{2}+9 x z^{2}\right) \hat{k}
\end{aligned}
$$

Q.: :- A fluid motion is given by

$$
\vec{v}=(y \sin z-\sin x) \hat{\imath}+(x \sin z+2 y z) \hat{j}+\left(x y \operatorname{coc} z+y^{2}\right) \hat{k} \text {. }
$$

Is the motion irrotational? If so, find the velocity potential.
Soln:1 Proceed as
Q. : \rightarrow If $\vec{F}=(\vec{a} \cdot \vec{r}) \vec{r}$, where \vec{a} is a constant vector, find curl \vec{F} and prove that it is perpendicular to \vec{a}. (20/1-12)
Sol: Let $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
Now $\quad \vec{a} \cdot \vec{r}=e_{1} x+a_{2} y+a_{3} z$

$$
\begin{aligned}
\Rightarrow\left(\overrightarrow{e_{1}} \cdot \vec{r}\right) \vec{r}= & \left(a_{1} x+a_{2} y+a_{3} z\right) \cdot(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \\
= & \left(a_{1} x^{2}+a_{2} x y+a_{3} x z\right) \hat{\imath}+\left(a_{1} x y+a_{2} y^{2}+a_{3} y z\right) \hat{\jmath} \\
& +\left(a_{1} x z+a_{2} y z+a_{3} z^{2}\right) \hat{k}
\end{aligned}
$$

Now

$$
\begin{aligned}
& \text { Now Curl }\left(\overrightarrow{a_{1}} \cdot \vec{r}\right) \cdot \vec{r}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{2}{2 x} & \frac{2}{2 y} & \frac{2}{2 z} \\
a_{1} x^{2}+a_{2} x y & a_{1} x y+a_{2} y^{2} & a_{1} x z+a_{2} y z \\
+a_{3} x z & +a_{3} y z & +a_{3} z^{2}
\end{array}\right| \\
& \text { Curl } \vec{F}=\hat{i}\left(a_{2} z-a_{3} y\right)-\hat{j}\left(a_{1} z-a_{3} x\right)+\hat{k}\left(a_{1} y-a_{2} x\right)
\end{aligned}
$$

Now to show curl \vec{f} is perpendicular to \vec{a} i.e. we have to show curl $\vec{f} \cdot \vec{a}=0$

$$
\begin{aligned}
\text { curl f } \cdot \vec{a} & =a_{1} \hat{b}+a_{2} \hat{\jmath}+a_{3} \hat{k} \\
& =\left(a_{2} z-a_{3} y\right) a_{1}-\left(a_{1} z-a_{3} x\right) a_{2}+\left(a_{1} y-a_{2} x\right) a_{3} \\
& =0
\end{aligned}
$$

Practice Questions

(1) Find the Curl of the following vector fields

$$
\begin{array}{r}
\vec{F}=x^{2} y^{2 \hat{\imath}}+2 x y \hat{\jmath}-\left(y^{2}-x y\right) \hat{k} \text { at }(1,2,3) \\
\text { Ans: Curl } \vec{F}=(2 y-x) \hat{\imath}+y \hat{\jmath}+2 y\left(1-x^{2}\right) \hat{k}
\end{array}
$$

(2) Find the Curl of the following vector fields

$$
\vec{F}=e^{x y z}\left(x y^{2} \hat{\imath}+y z^{2} \hat{\jmath}+z x^{2} \hat{k}\right.
$$

$$
\text { Ans: Curl } \vec{F}=-39 e^{6 \hat{\imath}}+3 e^{6} \hat{\jmath}+92 e^{6 \hat{k}}
$$

(3) If a vector field is given by
$\vec{F}=\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}$. Is this field irrotational ? If so, find its scalar potential.

$$
\text { Ans: Yes, } \quad \text { scalar potential is } \frac{x^{3}}{3}+\frac{x^{2}}{2}-\frac{y^{2}}{2}-x y^{2}+c
$$

miet

Practice Questions

$$
\begin{align*}
& \text { A fluid motion is given by } \tag{4}\\
& \vec{v}=(y \sin z-\sin x) \hat{i}+(x \sin z+2 y z) \hat{j}+\left(x y \cos z+y^{2}\right) \hat{k} \\
& \text { is the motion irrotational? If so, find the velocity potential. }
\end{align*}
$$

Ans: Yes, Velocity potential $=x y \sin z+\cos x+y^{2} z+c$.

Lecture 40

Line Integral, Surface Integral And Volume Integral

Line Integral

Let $\vec{F}(x, y, z)$ be a vector function and a curve $A B$.
Line integral of a vector function \vec{F} along the curve $A B$ is defined as
Line integral $=\int_{c}\left(\vec{F} \cdot \frac{\overrightarrow{d r}}{d s}\right) d s=\int_{c} \vec{F} \cdot \overrightarrow{d r}$

Note (1) Work. If \bar{F} represents the variable force acting on a particle along arc $A B$, then the total work done $=\int_{A}^{B} \vec{F} \cdot \overrightarrow{d r}$

Example 1

If a force $\hat{F}=2 x^{2} y \hat{i}+3 x y \hat{j}$ displaces a particle in the $x y$-plane from $(0,0)$ to $(1,4)$ along a curve $y=4 x^{2}$. Find the work done.

Solution

$$
\begin{aligned}
\text { Work done } & =\int_{c} \vec{F} \cdot \overrightarrow{d r} \\
& =\int_{c}\left(2 x^{2} y \hat{i}+3 x y \hat{j}\right) \cdot(d x \hat{i}+d y \hat{j}) \\
& =\int_{c}\left(2 x^{2} y d x+3 x y d y\right)
\end{aligned} \quad\left[\begin{array}{l}
\vec{r}=x \hat{i}+y \hat{j} \\
\overrightarrow{d r}=d x \hat{i}+d y \hat{j}
\end{array}\right]
$$

Putting the values of y and $d y$, we get

$$
\binom{y=4 x^{2}}{d y=8 x d x}
$$

$$
\begin{aligned}
& =\int_{0}^{1} \cdot\left[2 x^{2}\left(4 x^{2}\right) d x+3 x\left(4 x^{2}\right) 8 x d x\right] \\
& =104 \int_{0}^{1} x^{4} d x=104\left(\frac{x^{5}}{5}\right)_{0}^{1}=\frac{104}{5}
\end{aligned}
$$

Ans.

Example 2

Evaluate $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ where $\vec{F}=x^{2} \hat{i}+x y \hat{j}$ and C is the boundary of the square in the plane $z=O$ and bounded by the lines $x=0, y=0, x=a$ and $y=a$.

Solution

$$
\begin{array}{r}
\int_{C} \vec{F} \cdot \vec{d} r=\int_{O A} \vec{F} \cdot \overrightarrow{d r}+\int_{A B} \vec{F} \cdot \overrightarrow{d r}+\int_{B C} \vec{F} \cdot \overrightarrow{d r}+\int_{C O} \vec{F} \cdot \overrightarrow{d r} \\
\vec{r}=x \hat{i}+y \hat{j}, \quad \vec{d} r=d x \hat{i}+d y \hat{y}, \quad \vec{F}=x^{2} \hat{i}+x y \hat{j} \\
\vec{F} \cdot \overrightarrow{d r}=x^{2} d x+x y d y \tag{1}
\end{array}
$$

On $O A, y=0$

$$
\therefore \vec{F} \cdot \overrightarrow{d r}=x^{2} d x
$$

$$
\begin{equation*}
\int_{O A} \vec{F} \cdot \overrightarrow{d r}=\int_{0}^{a} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{a}=\frac{a^{3}}{3} \tag{2}
\end{equation*}
$$

On $A B, x=a$

$$
\therefore d x=0
$$

(1) becomes

$$
\begin{gather*}
\therefore \vec{F} \cdot \overrightarrow{d r}=a y d y \\
\int_{A b} \vec{F} \cdot \overrightarrow{d r}=\int_{0}^{a} a y d y=a\left[\frac{y^{2}}{2}\right]_{0}^{a}=\frac{a^{3}}{2} \tag{3}
\end{gather*}
$$

On $B C, y=a$

$$
\therefore d y=0
$$

$$
\vec{F} \cdot \overrightarrow{d r}=x^{2} d x
$$

$$
\begin{equation*}
\int_{B C} \vec{F} \cdot \overrightarrow{d r}=\int_{a}^{0} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{a}^{0}=\frac{-a^{3}}{3} \tag{4}
\end{equation*}
$$

On $C O, x=0, \quad \therefore \vec{F} \cdot \overrightarrow{d r}=0$
(1) becomes

$$
\begin{equation*}
\int_{C O} \vec{F} \cdot \overrightarrow{d r}=0 \tag{5}
\end{equation*}
$$

On adding (2), (3), (4) and (5), we get $\int_{C} \vec{F} \cdot \overrightarrow{d r}=\frac{a^{3}}{3}+\frac{a^{3}}{2}-\frac{a^{3}}{3}+0=\frac{a^{3}}{2}$
Q.li-1 Find the work done in mowing a particle in the force field: $\vec{F}=3 x^{2} \hat{\imath}+(2 x z-y) \hat{\jmath}+2 \hat{k}$ along the curve $x^{2}=4 y$ and $3 x^{3}=8 z$ from $x=0$ to $x=2$.
Solnct Work done $=\int_{c} \vec{b} \cdot d \vec{r}$

$$
\begin{aligned}
& =\int_{c}\left[3 x^{2} \hat{\imath}+(2 x z-y) \hat{\jmath}+z \hat{k}\right] \cdot(d x \hat{\imath}+d y \hat{j}+d z \hat{k}) \\
& =\int_{c} 3 x^{2} d x+(2 x z-y) d y+z d z
\end{aligned}
$$

Along the curve $x^{2}=4 y$ and $3 x^{3}=8 z$ from $x=0$ to $x=2$

$$
\Rightarrow \quad 2 x d x=4 d y \text { and } 9 x^{2} d x=8 d z
$$

$$
\begin{aligned}
\Rightarrow \text { Work done } & =\int_{x=0}^{2}\left[3 x^{2} d x+\left(2 x \cdot \frac{3 x^{3}}{8}-\frac{x^{2}}{4}\right) \frac{x}{2} d x+\frac{3 x^{3}}{8} \cdot 9 x^{2}\right. \\
8 & d x] \\
& =\int_{x=0}^{2}\left[3 x^{2}+\frac{1}{8}\left(3 x^{5}-x^{3}\right)+\frac{27}{64} x^{5}\right] d x \\
& =\left[x^{3}+\frac{1}{8}\left(\frac{3 x^{6}}{6}-\frac{x^{4}}{4}\right)+\frac{27}{64} \frac{x^{6}}{6}\right]_{0}^{2} \\
& =\left[8+\frac{1}{8}(32-4)+\frac{27}{64} \cdot \frac{64}{6}\right]=16
\end{aligned}
$$

Q.3i \rightarrow If $\vec{A}=(x-y) \hat{\imath}+(x+y) \hat{\jmath}$, evaluate $\oint_{c} \vec{A} \cdot d \vec{\theta}$ around the curve C consisting of $y=x^{2}$ and $y^{2}=x$.
Sol: $\quad \oint_{C} \vec{A} \cdot d \vec{r}=\oint_{C}(x-y) d x+(x+y) d y$ C consisting of $y=x^{2}$ and $y^{2}=x$

$$
\oint_{c} \vec{A} \cdot d \vec{r}=\oint_{C_{1}} \vec{A} \cdot d \vec{r}+\oint_{C_{2}} \vec{A} \cdot d \vec{r}
$$

Along $C_{1}, y=x^{2}, d y=2 x d x$

$$
\begin{aligned}
\Rightarrow \oint_{c_{1}} \vec{A} \cdot d \vec{r} & =\int_{0}^{1}\left(x-x^{2}\right) d x+\left(x+x^{2}\right) 2 x d x=\int_{0}^{1}\left(x+x^{2}+2 x^{3}\right) d x \\
& =\left[\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{2 x^{4}}{4}\right]_{0}^{1}=\frac{1}{2}+\frac{1}{3}+\frac{1}{2}=\frac{4}{3}
\end{aligned}
$$

Now Along C2, $\quad x=y^{2}, \quad d x=2 y d y$

$$
\begin{aligned}
\oint_{C_{2}} \vec{A} \cdot d \vec{r} & =\int_{1}^{0}\left(y^{2}-y\right) 2 y d y+\left(y^{2}+y\right) d y \\
\oint_{C_{2}} \vec{A} \cdot d \vec{r} & =\int_{1}^{0}\left(2 y^{3}-y^{2}+y\right) d y=\left[\frac{y^{4}}{2}-\frac{y^{3}}{3}+\frac{y^{2}}{2}\right]_{1}^{0} \\
& =-\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{2}\right]=-\frac{2}{3}
\end{aligned}
$$

Thus $\quad \oint_{c} \vec{A} \cdot d \vec{r}=\frac{4}{3}+\left(-\frac{2}{3}\right)=\frac{2}{3}$

Surface Integral

Surface integral of a vector function \vec{F} over the surface S is defined as the integral of the components of \vec{F} along the normal to the surface.

Component of \vec{F} along the normal
$=\vec{F} . \hat{n}$, where \hat{n} is the unit normal vector to an element $d s$ and

$$
\hat{n}=\frac{\operatorname{grad} f}{|\operatorname{grad} f|} \quad d s=\frac{d x d y}{(\hat{n} \cdot \hat{k})}
$$

Surface integral of F over S

$$
=\Sigma \vec{F} \cdot \hat{n} \quad=\iint_{S}(\vec{F} \cdot \hat{n}) d s
$$

Example 3

. Evaluate $\iint_{S} \vec{A} \cdot \hat{n} d s$ where $\vec{A}=\left(x+y^{2}\right) \hat{i}-2 x \hat{j}+2 y z \hat{k}$ and S is the surface of the plane $2 x+y+2 z=6$ in the first octant.

Solution

A vector normal to the surface " S " is given by

$$
\nabla(2 x+y+2 z)=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)(2 x+y+2 z)=2 \hat{i}+\hat{j}+2 \hat{k}
$$

And $\hat{n}=\mathrm{a}$ unit vector normal to surface S

$$
\begin{aligned}
& =\frac{2 \hat{i}+\hat{j}+2 \hat{k}}{\sqrt{4+1+4}}=\frac{2}{3} \hat{i}+\frac{1}{3} \hat{j}+ \\
\hat{k} \cdot \hat{n} & =\hat{k} \cdot\left(\frac{2}{3} \hat{i}+\frac{1}{3} \hat{j}+\frac{2}{3} \hat{k}\right)=\frac{2}{3}
\end{aligned}
$$

miet

$$
\iint_{S} \bar{A} \cdot \hat{n} d s=\iint_{R} \bar{A} \cdot \hat{n} \frac{d x d y}{\hat{k} \cdot \bar{n}}
$$

Where R is the projection of S.
Now, $\vec{A} \cdot \hat{n}=\left[\left(x+y^{2}\right) \hat{i}-2 x \hat{j}+2 y z \hat{k}\right] \cdot\left(\frac{2}{3} \hat{i}+\frac{1}{3} \hat{j}+\frac{2}{3} \hat{k}\right)$

$$
=\frac{2}{3}\left(x+y^{2}\right)-\frac{2}{3} x+\frac{4}{3} y z=\frac{2}{3} y^{2}+\frac{4}{3} y z
$$

Putting the value of z in (1), we get

$$
\begin{align*}
& \vec{A} \cdot \hat{n}=\frac{2}{3} y^{2}+\frac{4}{3} y\left(\frac{6-2 x-y}{2}\right)\binom{\because \text { on the plane } 2 x+y+2 z=6,}{z=\frac{(6-2 x-y)}{2}} \\
& \vec{A} \cdot \hat{n}=\frac{2}{3} y(y+6-2 x-y)=\frac{4}{3} y(3-x) \tag{2}
\end{align*}
$$

Iniet

Hence,

$$
\begin{equation*}
\iint_{S} \vec{A} \cdot \hat{n} d s=\iint_{R} \bar{A} \cdot \bar{n} \frac{d x d y}{|\hat{k} \cdot \bar{n}|} \tag{3}
\end{equation*}
$$

Putting the value of $\vec{A} \cdot \hat{n}$ from (2) in (3), we get

$$
\begin{aligned}
\iint_{S} \vec{A} \cdot \hat{n} d s=\iint_{R} \frac{4}{3} y(3-x) & \cdot \frac{3}{2} d x d y=\int_{0}^{3} \int_{0}^{6-2 x} 2 y(3-x) d y d x \\
& =\int_{0}^{3} 2(3-x)\left[\frac{y^{2}}{2}\right]_{0}^{6-2 x} d x \\
& =\int_{0}^{3}(3-x)(6-2 x)^{2} d x=4 \int_{0}^{3}(3-x)^{3} d x \\
& =4 \cdot\left[\frac{(3-x)^{4}}{4(-1)}\right]_{0}^{3}=-(0-81)=81
\end{aligned}
$$

Example 4

Evaluate $\iint_{S}(y z \hat{i}+z x \hat{j}+x y \hat{k}) \cdot \overrightarrow{d s}$ where S is the surface of the sphere

$$
x^{2}+y^{2}+z^{2}=a^{2} \text { in the first octant }
$$

Solution

Here, $\quad \phi=x^{2}+y^{2}+z^{2}-a^{2}$
Vector normal to the surface $=\nabla \phi=\hat{i} \frac{\partial \phi}{\partial x}+\hat{j} \frac{\partial \phi}{\partial y}+\hat{k} \frac{\partial \phi}{\partial z}$

$$
\begin{aligned}
&=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)\left(x^{2}+y^{2}+z^{2}-a^{2}\right)=2 x \hat{i}+2 y \hat{j}+2 z \hat{k} \\
& \hat{n}=\frac{\nabla \phi}{|\nabla \phi|}=\frac{2 x \hat{i}+2 y \hat{j}+2 z \hat{k}}{\sqrt{4 x^{2}+4 y^{2}+4 z^{2}}}=\frac{x \hat{i}+y \hat{j}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
&=\frac{x \hat{i}+y \hat{j}+z \hat{k}}{a} \\
& \quad\left[\because x^{2}+y^{2}+z^{2}=a^{2}\right]
\end{aligned}
$$

InIEt

Here,

$$
\vec{F}=y z \hat{i}+z x \hat{j}+x y \hat{k}
$$

$$
\vec{F} \cdot \hat{n}=(y z \hat{i}+z x \hat{j}+x y \hat{k}) \cdot\left(\frac{x \hat{i}+y \hat{j}+z \hat{k}}{a}\right)=\frac{3 x y z}{a}
$$

Now, $\iint_{S} F \cdot \hat{n} d s=\iint_{S}(\vec{F} \cdot \hat{n}) \frac{d x d y}{|\hat{k} \cdot \hat{n}|}=\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \frac{3 x y z d x d y}{a\left(\frac{z}{a}\right)}$

$$
\begin{aligned}
& =3 \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} x y d y d x=3 \int_{0}^{a} x\left(\frac{y^{2}}{2}\right)_{0}^{\sqrt{a^{2}-x^{2}}} d x \\
& =\frac{3}{2} \int_{0}^{a} x\left(a^{2}-x^{2}\right) d x=\frac{3}{2}\left(\frac{a^{2} x^{2}}{2}-\frac{x^{4}}{4}\right)_{0}^{a}=\frac{3}{2}\left(\frac{a^{4}}{2}-\frac{a^{4}}{4}\right)=\frac{3 a^{4}}{8} .
\end{aligned}
$$

Volume Integral

Let \vec{F} be a vector point function and volume V enclosed by a closed surface.
The volume integral $=\iiint_{V} \vec{F} d V$

Example 5

If ${ }^{\prime}=2 z \hat{i}-x \hat{j}+y \hat{k}$, evaluate $\iiint_{V} \vec{F} d v$ where, v is the region bounded by
the surfaces

$$
x=0, y=0, x=2, y=4, z=x^{2}, z=2 .
$$

Solution

$$
\begin{aligned}
& \iiint_{V} \vec{F} d v=\iiint(2 z \hat{i}-x \hat{j}+y \hat{k}) d x d y d z \\
& \quad=\int_{0}^{2} \int_{0}^{4} \int_{x^{2}}^{2}(2 z \hat{i}-x \hat{j}+y \hat{k}) d z d y d x=\int_{0}^{2} \int_{0}^{4}\left[z^{2} \hat{i}-x z \hat{j}+y z \hat{k}\right]_{x^{2}}^{2} d y d x \\
& \quad=\int_{0}^{2} \int_{0}^{4}\left[4 \hat{i}-2 x \hat{j}+2 y \hat{k}-x^{4} \hat{i}+x^{3} \hat{j}-x^{2} y \hat{k}\right] d y d x \\
& \quad=\int_{0}^{2}\left[4 y \hat{i}-2 x y \hat{j}+y^{2} \hat{k}-x^{4} y \hat{i}+x^{3} y \hat{j}-\frac{x^{2} y^{2}}{2} \hat{k}\right]_{0}^{4} d x
\end{aligned}
$$

Manet

$=\int_{0}^{2}\left(16 \hat{i}-8 x \hat{j}+16 \hat{k}-4 x^{4} \hat{i}+4 x^{3} \hat{j}-8 x^{2} \hat{k}\right) d x$
$=\left[16 x \hat{i}-4 x^{2} \hat{j}+16 x \hat{k}-\frac{4 x^{5}}{5} \hat{i}+x^{4} \hat{j}-\frac{8 x^{3}}{3} \hat{k}\right]_{0}^{2}$
$=32 \hat{i}-16 \hat{j}+32 \hat{k}-\frac{128}{5} \hat{i}+16 \hat{j}-\frac{64}{3} \hat{k}=\frac{32 \hat{i}}{5}+\frac{32 \hat{k}}{3}=\frac{32}{15}(3 \hat{i}+5 \hat{k})$

Practice Questions

UREDE

2 Find the work done when a force $\bar{F}=\left(x^{2}-y^{2}+x\right) \hat{i}-(2 x y+y) \hat{j}$ moves a particle from origin to $(1,1)$ along a parabola $y^{2}=x$.

Ans. $\frac{2}{3}$ $2 x+y+2 z=6$ in the first octant.

Practice Questions

5 Evaluate $\iint_{S} \vec{A} \cdot \hat{n} d s$, where $\vec{A}=z \hat{i}+x \hat{j}-3 y^{2} z \hat{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.

Ans. 90

6 Evaluate $\iint_{S} \vec{F} \cdot \hat{n} d s$, where, $F=2 y x \hat{i}-y z \hat{j}+x^{2} \hat{k}$ over the surface S of the cube bounded by the coordinate planes and planes $x=a, y=a$ and $z=a$. Ans. $\frac{1}{2} a^{4}$

miet

Thank You

Lecture 41(I)

Green's Theorem and its Applications - I

Green Theorem

If $\phi(x, y), \psi(x, y), \frac{\partial \phi}{\partial v}$ and $\frac{\partial \psi}{\partial x}$ be continuous functions over a region R bounded by simple closed curve C in $x-y$ plane, then

$$
\oint_{C}(\phi d x+\psi d y)=\iint_{R}\left(\frac{\partial \psi}{\partial x}-\frac{\partial \phi}{\partial y}\right) d x d y
$$

Example 1

Using Green's Theorem, evaluate $\int_{c}\left(x^{2} y d x+x^{2} d y\right)$, where c is the boundary described counter clockwise of the triangle with vertices $(0,0),(1,0),(1,1)$.

Solution

By Green's Theorem, we have

$$
\begin{gathered}
\int_{c}(\phi d x+\psi d y)=\iint_{R}\left(\frac{\partial \psi}{\partial x}-\frac{\partial \phi}{\partial y}\right) d x d y \\
\int_{c}\left(x^{2} y d x+x^{2} d y\right)=\iint_{R}\left(2 x-x^{2}\right) d x d y \\
=\int_{0}^{1}\left(2 x-x^{2}\right) d x \int_{0}^{x} d y=\int_{0}^{1}\left(2 x-x^{2}\right) d x[y]_{0}^{x}
\end{gathered}
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left(2 x-x^{2}\right)(x) d x=\int_{0}^{1}\left(2 x^{2}-x^{3}\right) d x=\left(\frac{2 x^{3}}{3}-\frac{x^{4}}{4}\right)_{0}^{1} \\
& =\left(\frac{2}{3}-\frac{1}{4}\right)=\frac{5}{12}
\end{aligned}
$$

Example 2

A vector field \vec{F} is given by $\dot{F}=\sin y \hat{i}+x(1+\cos y) \hat{j}$.
Evaluate the line integral $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ where C is the circular path given by $x^{2}+y^{2}=a^{2}$.

Solution

$$
\vec{F}=\sin y \hat{i}+x(1+\cos y) \hat{j}
$$

$$
\int_{C} \vec{F} \cdot \overrightarrow{d r}=\int_{C}[\sin y \hat{i}+x(1+\cos y) \hat{j}] \cdot(\hat{i} d x+\hat{j} d y)=\int_{C} \sin y d x+x(1+\cos y) d y
$$

On applying Green's Theorem, we have

$$
\begin{aligned}
\Phi_{c}(\phi d x+\psi d y) & =\iint_{s}\left(\frac{\partial \psi}{\partial x}-\frac{\partial \phi}{\partial y}\right) d x d y \\
& =\iint_{s}[(1+\cos y)-\cos y] d x d y
\end{aligned}
$$

wheres is the circular plane surface of radius a.

$$
=\iint_{s} d x d y=\text { Area of circle }=\pi a^{2}
$$

Example 3

Apply Green's Theorem to evaluate $\int_{C}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$, where C is the boundary of the area enclosed by the x-axis and the upper half of circle $x^{2}+y^{2}=a^{2}$.

Solution

$$
\int_{C}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]
$$

By Green's Theorem, we've $\int_{C}(\phi d x+\psi d y)=\iint_{S}\left(\frac{\partial \psi}{\partial x}-\frac{\partial \phi}{\partial y}\right) d x d y$

$$
\begin{aligned}
& =\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left[\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)-\frac{\partial}{\partial y}\left(2 x^{2}-y^{2}\right)\right] d x d y \\
& =\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}(2 x+2 y) d x d y=2 \int_{-a}^{a} d x \int_{0}^{\sqrt{a^{2}-x^{2}}}(x+y) d y
\end{aligned}
$$

$=2 \int_{-a}^{a} d x\left(x y+\frac{y^{2}}{2}\right)_{0}^{\sqrt{a^{2}-x^{2}}}=2 \int_{-a}^{a}\left(x \sqrt{a^{2}-x^{2}}+\frac{a^{2}-x^{2}}{2}\right) d x$
$=2 \int_{-a}^{a} x \sqrt{a^{2}-x^{2}} d x+\int_{-a}^{a}\left(a^{2}-x^{2}\right) d x$

$$
\left[\begin{array}{rr}
\int_{-a}^{a} f(x) d x & =2 \int_{0}^{a} f(x) d x, f \text { is even } \\
& =0,
\end{array}\right.
$$

$=0+2 \int_{0}^{a}\left(a^{2}-x^{2}\right) d x=2\left(a^{2} x-\frac{x^{3}}{3}\right)_{0}^{a}=2\left(a^{3}-\frac{a^{3}}{3}\right)=\frac{4 a^{3}}{3}$

Along $\quad C_{3}: y=x, d y=d x ; x: 1$ to 0 ;

$$
\begin{gathered}
I_{3}=\int_{C_{3}}(x d y-y d x)=\int(x d x-x d x)=0 \\
A=\frac{1}{2}\left(I_{1}+I_{2}+I_{3}\right)=\frac{1}{2}(0+2 \log 2+0)=\log 2
\end{gathered}
$$

Example 4

Evaluate $\Phi_{C}-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$, where $C=C_{1} U C_{2}$ with $C_{1}: x^{2}+y^{2}=1$ and $C_{2}: x= \pm 2, y= \pm 2$.

Solution

$$
\begin{aligned}
& \Phi_{C}-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y \\
& \quad=\iint\left(\frac{\partial}{\partial x} \frac{x}{x^{2}+y^{2}}+\frac{\partial}{\partial y} \frac{y}{x^{2}+y^{2}}\right) d x d y \\
& \quad=\iint\left[\frac{\left(x^{2}+y^{2}\right) 1-2 x(x)}{\left(x^{2}+y^{2}\right)^{2}}+\frac{\left(x^{2}+y^{2}\right) 1-2 y(y)}{\left(x^{2}+y^{2}\right)^{2}}\right] d x d y
\end{aligned}
$$

$$
\begin{aligned}
& =\iint\left[\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{x^{2}+y^{2}-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right] d x d y \\
& =\iint\left[\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right] d x d y \\
& =\iint \frac{0}{\left(x^{2}+y^{2}\right)^{2}} d x d y=0
\end{aligned}
$$

Example 1

miet

Evaluate by Green's theorem $\int_{C}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right]$ where C is the rectangle with vertices $(0,0),(\pi, 0),(\pi, \pi / 2),(0, \pi / 2)$ and hence verify Green's theorem.

Solution

By Green's theorem we have

$$
\int_{C}(M d x+N d y)=\iint_{S}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Comparing the given integral

$$
\mathrm{M}=\mathrm{e}^{-\mathrm{x}} \sin \mathrm{y}
$$

$$
\text { and } \quad N=e^{-x} \cos y
$$

Then $\frac{\partial M}{\partial y}=e^{-x} \cos y$ and $\frac{\partial N}{\partial x}=-e^{-x} \cos y$
Hence by Green's theorem

$$
\begin{aligned}
\int_{C}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right] & =\iint_{\mathrm{R}}\left(-e^{-x} \cos y-e^{-x} \cos y\right) d x d y \\
& =-2 \int_{x-0}^{\pi} \int_{y-0}^{\pi / 2} e^{-x} \cos y d x d y \\
& =-2\left[-e^{-x}\right][\sin y]_{0}^{\pi / 2} \\
& =2\left(\mathrm{e}^{-\pi}-1\right)(1) \\
& =2\left(\mathrm{e}^{-\pi}-1\right)
\end{aligned}
$$

InIET

Evaluation of line integral:

For this purpose, letus evaluate the given line integral directly.

$$
\begin{aligned}
\int_{C} & {\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right] } \\
= & \int_{O A}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right]+\int_{A B}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right]+ \\
& \int_{B D}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right]+\int_{D O}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right]
\end{aligned}
$$

Now along $\mathrm{OA}, \mathrm{y}=0 \quad \Rightarrow \quad \mathrm{dy}=0$

$$
\begin{array}{lll}
\text { along } A B, x=\pi & \Rightarrow & d x=0 \\
\text { alongBD, } y=\pi / 2 & \Rightarrow & d y=0 \\
\text { alongDO, } x=0 & \Rightarrow & d x=0
\end{array}
$$

Hence the given line integral

$$
\begin{aligned}
& =0+\int_{0}^{\pi / 2} e^{-\pi} \cos y d y+\int_{\pi}^{0} e^{-d x}+\int_{\pi / 2}^{0} \cos y d y \\
& =e^{-\pi}[\sin y]_{0}^{\pi / 2}+\left[-e^{-x}\right]_{\pi}^{0}+[\sin y]_{\pi / 2}^{0} \\
& =\mathrm{e}^{-\pi}-\left(1-\mathrm{e}^{-\pi}\right)+(-1)^{0}=2\left(\mathrm{e}^{-\pi-1}\right)
\end{aligned}
$$

Hence Green's theorem is verified.

Example 2

State and verify Green's Theorem in the plane for $\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region bounded by $x \geq 0, y \leq 0$ and $2 x-3 y=6$.

Solution

Here the closed curve C consists of straight lines $O B, B A$ and $A O$, where coordinates of A and B are $(3,0)$ and $(0,-2)$ respectively. Let R be the region bounded by C.

Then by Green's Theorem in plane, we have
$\oint\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$
$=\iint_{R}\left[\frac{\partial}{\partial x}(4 y-6 x y)-\frac{\partial}{\partial y}\left(3 x^{2}-8 y^{2}\right)\right] d x d y$

miet

$$
\begin{align*}
& =\iint_{R}(-6 y+16 y) d x d y=\iint_{R} 10 y d x d y \\
& =10 \int_{0}^{3} d x \int_{\frac{1}{3}(2 x-6)^{0}}^{0} y d y=10 \int_{0}^{3} d x\left[\frac{y^{2}}{2}\right]_{\frac{1}{3}(2 x-6)}^{0}=-\frac{5}{9} \int_{0}^{3} d x(2 x-6)^{2} \\
& =-\frac{5}{9}\left[\frac{(2 x-6)^{3}}{3 \times 2}\right]_{0}^{3}=-\frac{5}{54}(0+6)^{3} \quad=-\frac{5}{54}(216)=-20 \tag{2}
\end{align*}
$$

Now we evaluate L.H.S. of (1) along $O B, B A$ and $A O$.
Along $O B, x=0, d x=0$ and y varies form 0 to -2 .
Along $B A, x=\frac{1}{2}(6+3 y), d x=\frac{3}{2} d y$ and y varies from -2 to 0 . and along $A O, y=0, d y=0$ and x varies from 3 to 0 .
L.H.S. of $(1)=\Phi\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$

$$
=\int_{O B}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]+\int_{B A}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 x-6 x y) d y\right]
$$

$$
+\int_{A O}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]
$$

$$
=\int_{0}^{-2} 4 y d y+\int_{-2}^{0}\left[\frac{3}{4}(6+3 y)^{2}-8 y^{2}\right]\left(\frac{3}{2} d y\right)+[4 y-3(6+3 y) y] d y+\int_{3}^{0} 3 x^{2} d x
$$

$$
=\left[2 y^{2}\right]_{0}^{-2}+\int_{-2}^{0}\left[\frac{9}{8}(6+3 y)^{2}-12 y^{2}+4 y-18 y-9 y^{2}\right] d y+\left(x^{3}\right)_{3}^{0}
$$

$$
=2[4]+\int_{-2}^{0}\left[\frac{9}{8}(6+3 y)^{2}-21 y^{2}-14 y\right] d y+(0-27)
$$

$$
=8+\left[\frac{9}{8} \frac{(6+3 y)^{3}}{3 \times 3}-7 y^{3}-7 y^{2}\right]_{-2}^{0}-27=-19+\left[\frac{216}{8}+7(-2)^{3}+7(-2)^{2}\right]
$$

$$
\begin{equation*}
=-19+27-56+28=-20 \tag{3}
\end{equation*}
$$

With the help of (2) and (3), we find that (1) is true and so Green's Theorem is verified.
Q.2:- Verify Greens theorem in plane for; $\oint_{c}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$, where C Fo the boundary of the region defined by $y^{2}=8 x$ and $x=2$.
Soling: Wing Crees's theorem

$$
\begin{aligned}
& \left.\sum_{A}^{2}=2013-14\right) \\
& y^{2}=8 x \\
& B \\
& D
\end{aligned}
$$

$$
\begin{aligned}
& \oint_{C}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y \\
& =\iint_{R}\left[\frac{2}{2 x}\left(x^{2} y+3\right)-\frac{2}{2 y}\left(x^{2}-2 x y\right)\right] d x d y \\
& =\iint_{R}(2 x y+2 x) d x d y=\int_{y=-4}^{4} \int_{x=y^{2} / 8}^{2}(2 x y+2 x) d x d y \\
& =\int_{y=-4}^{4}\left[x^{2} y+x^{2}\right]^{2}=8 x \\
& =\left[2 y^{2} / 8\right. \\
& =\left[y=\int_{y=-4}^{4}\left[4 y+4-\frac{y^{5}}{64}-\frac{y^{4}}{64}\right] d y\right. \\
& \left.=\frac{y^{6}}{64 \times 6}-\frac{y^{5}}{64 x^{5}}\right]_{-4}^{4}=\frac{128}{5}
\end{aligned}
$$

Verification of the Crees's theorem:

$$
\begin{gathered}
\oint_{c}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y=\left[\int_{B O A}\left[\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y\right]\right. \\
\left.+\int_{A O B}\left[\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y\right]\right]
\end{gathered}
$$

Along $B O A, y^{2}=8 x, \quad d x=\frac{y}{4} d y$
Along $A D B, x=2, d x=0$

$$
\begin{aligned}
& =\int_{y=44}^{4}\left[\left(\frac{y^{4}}{64}-\frac{y^{3}}{4}\right) \frac{y}{4} d y+\left(\frac{y^{5}}{64}+3\right) d y\right] \\
& +\int_{y=-4}^{4}[(4-4 y) \cdot 0+(4 y+3) d y] \\
& =\left[\frac{y^{6}}{64 \times 24}-\frac{y^{5}}{16 \times 5}+\frac{y^{6}}{64 \times 6}+3 y\right]_{4}^{-4}+\left[2 y^{2}+3 y\right]_{-4}^{4} \\
& =\frac{128}{5}-24+24=\frac{128}{5} \quad \text { Verified }
\end{aligned}
$$

Q.3:-1 verify the Green's theorem to evaluate the line integral $\int_{C}\left(2 y^{2} d x+3 x d y\right)$, where C is the boundary of the closed region bounded by $y=x$ and $y=x^{2}$.
Sol ni Using Green's theorem

$$
\begin{aligned}
& \frac{d l^{n}: 1}{} \text { Using Green's theorem } \\
& \int_{C} 2 y^{2} d x+3 x d y=\iint\left[\frac{2}{2 x}(3 x)-\frac{2}{2 y}\left(2 y^{2}\right)\right] d x d y \\
& =\iint(3-4 y) d x d y=\int_{0}^{1} \int_{x=y}^{5 y}(3-4 y) d x d y \\
& =\int_{0}^{1}[3 x-4 x y]_{y}^{\sqrt{y}} d y=\int_{0}^{1}\left(3 \sqrt{y}-4 y^{3 / 2}-3 y+4 y^{2}\right) d y \\
& =\left[3 \times \frac{2}{3} y^{3 / 2}-4 \times \frac{2}{5} y^{5 / 2}-\frac{3 y^{2}}{2}+\frac{4 y^{3}}{3}\right]_{0}^{1}=\frac{6}{3}-\frac{8}{5}-\frac{3}{2}+\frac{4}{3}=\frac{7}{30}
\end{aligned}
$$

Verification of the Cireen's theorem:

$$
\int_{C} 2 y^{2} d x+3 x d y=\int_{O A B}\left(2 y^{2} d x+3 x d y\right)+\int_{B C O}\left(2 y^{2} d x+3 x d y\right)
$$

Alony $O A B, y=x^{2}, d y=2 x d x$
$A \operatorname{lon} g B C O, \quad y=x, \quad d y=d x$

$$
\begin{aligned}
& =\int_{0}^{1}\left[2 x^{4}+3 x(2 x)\right] d x+\int_{1}^{0}\left(2 x^{2}+3 x\right) d x \\
& =\left[\frac{2 x^{5}}{5}+2 x^{3}\right]_{0}^{1}+\left[\frac{2 x^{3}}{3}+\frac{3 x^{2}}{2}\right]_{1}^{0} \\
& =\left(\frac{2}{5}+2\right)-\left(\frac{2}{3}+\frac{3}{2}\right)=\frac{12}{5}-\frac{13}{6}=\frac{72-65}{30}=\frac{7}{30} \quad \text { Verifed }
\end{aligned}
$$

Q.4i, Verify Crreen'c theorem, evaluate $\int_{c}\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y$, where C square formed by lines $x= \pm 1, y= \pm 1 . \quad(2017-18)$
Sol': 1 by Green's theorem, we have

$$
\begin{aligned}
\int_{C}\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y & =\iint_{R}\left[\frac{2}{2 x}\left(x^{2}+y^{2}\right)\right. \\
& \left.-\frac{2}{2 y}\left(x^{2}+x y\right)\right] d x d y \\
=\iint_{R}(2 x-x) d x d y & =\int_{x=-1}^{1} \int_{y=-1}^{1} x d x d y=\int_{-1}^{1} x(y)_{-1}^{1} d x
\end{aligned}=\int_{-1}^{1} 2 x d x
$$

Verification of the Green'c theorem:

$$
\int_{C}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]=\int_{A B}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]+
$$

$$
\begin{aligned}
& \int_{B C}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]+\int_{C D}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right] \\
& +\int_{D A}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]
\end{aligned}
$$

Now along $A B, y=-1$ and $d y=0$

$$
\begin{aligned}
\therefore \int_{A B}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right] & =\int_{-1}^{1}\left(x^{2}-x\right) d x=\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{1}^{1} \\
& =\left[\frac{1}{3}-\frac{1}{2}+\frac{1}{3}+\frac{1}{2}\right]=\frac{2}{3}
\end{aligned}
$$

Along $B C, x=1$ and $d x=0$

$$
\begin{aligned}
& \text { Ing } B C, x=1 \text { and } d x=0 \\
& \therefore \int_{B C}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]_{-1}^{1}\left(1+y^{2}\right) d y=\left[y+\frac{y^{3}}{3}\right]_{-1}^{1}=\frac{8}{3}
\end{aligned}
$$

$A \operatorname{long} C D, y=1$ and $d y=0$

$$
\begin{gathered}
\therefore \int_{C D}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]=\int_{-1}^{1}\left(x^{2}+x\right) d x=\left[\frac{x^{3}}{3}+\frac{x^{2}}{2}\right]_{-1}^{1} \\
=\left[\frac{-1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{2}\right]=-\frac{2}{3}
\end{gathered}
$$

Along $D A, x=-1$. and $d x=0$

$$
\begin{aligned}
& \therefore \int_{D A}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right)=\int_{+1}^{-1}\left(1+y^{2}\right) d y=\left[y+\frac{y^{3}}{3}\right]_{1}^{-1} \\
&=\left[-1-\frac{1}{3}-1-\frac{1}{3}\right]=-\frac{8}{3}
\end{aligned}
$$

$\Rightarrow \int_{c}\left[\left[x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]=-\frac{2}{3}+\frac{8}{3}-\frac{2}{3}-\frac{8}{3}=0 \quad$ Verified

Practice Questions

miet

1
Verify Green's Theorem in plane for $\int_{C}\left(x^{2}+2 x y\right) d x+\left(y^{2}+x^{3} y\right) d y$, where c is a square with the vertices $P(0,0), Q(1,0), R(1,1)$ and $S(0,1)$. Ans. $-\frac{1}{2}$

2 Verify Green's Theorem for $\int_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$ where C is the boundary by $y=x$ and $y=x^{2}$.

3 Verify Green's Theorem for $\int_{c}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$ around the boundary c of the region $y^{2}=8 x$ and $x=2$.

4 Verify the Green's Theorem to evaluate the line integral $\int_{c}\left(2 y^{2} d x+3 x d y\right)$, where c is the boundary of the closed region bounded by $y=x$ and $y=x^{2}$.

Ans. $\frac{27}{4}$

Lecture 41(II)

Green's Theorem and its Applications - II

Green Theorem

If $\phi(x, y), \psi(x, y), \frac{\partial \phi}{\partial v}$ and $\frac{\partial \psi}{\partial x}$ be continuous functions over a region R bounded by simple closed curve C in $x-y$ plane, then

$$
\oint_{C}(\phi d x+\psi d y)=\iint_{R}\left(\frac{\partial \psi}{\partial x}-\frac{\partial \phi}{\partial y}\right) d x d y
$$

Area of Plane Region by Green Theorem

We know that

$$
\begin{align*}
\int_{C} M d x+N d y & =\iint_{A}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y \tag{1}\\
N & =x\left(\frac{\partial N}{\partial x}=1\right) \text { and } M=-y\left(\frac{\partial M}{\partial y}=1\right) \text { in (1), we get } \\
\int_{C}-y d x+x d y & =\iint_{A}[1-(-1)] d x d y=2 \iint d x d y=2 A \\
\text { Area } & =\frac{1}{2} \int_{C}(x d y-y d x)
\end{align*}
$$

On putting

Example 3

Using Green's theorem, find the area of the region in the first quadrant bounded by the curves

$$
y=x, y=\frac{1}{x}, y=\frac{x}{4}
$$

Solution

By Green's Theorem Area A of the region bounded by a closed curve C is given by

$$
A=\frac{1}{2} \oint_{C}(x d y-y d x)
$$

miet

Here, C consists of the curves $C_{1}: y=\frac{x}{4}, C_{2}: y=\frac{1}{x}$

$$
\text { and } C_{3}: y=x \text { So }
$$

$$
\left[A=\frac{1}{2} \oint_{C}=\frac{1}{2}\left[\int_{C_{1}}^{3}+\int_{C_{2}}+\int_{C_{3}}\right]=\frac{1}{2}\left(I_{1}+I_{2}+I_{3}\right)\right]
$$

Along

$$
C_{1}: y=\frac{x}{4}, d y=\frac{1}{4} d x, x: 0 \text { to } 2
$$

$$
I_{1}=\int_{C_{1}}(x d y-y d x)=\int_{C_{1}}\left(x \frac{1}{4} d x-\frac{x}{4} d x\right)=0
$$

Along $\quad C_{2}: y=\frac{1}{x}, d y=-\frac{1}{x^{2}} d x, x: 2$ to 1
$I_{2}=\int_{C_{2}}(x d y-y d x)=\int_{2}^{1}\left[x\left(-\frac{1}{x^{2}}\right) d x-\frac{1}{2} d x\right]=[-2 \log x]_{2}^{1}=2 \log 2$

Example 1

miet

Evaluate by Green's theorem $\int_{C}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right]$ where C is the rectangle with vertices $(0,0),(\pi, 0),(\pi, \pi / 2),(0, \pi / 2)$ and hence verify Green's theorem.

Solution

By Green's theorem we have

$$
\int_{C}(M d x+N d y)=\iint_{S}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Comparing the given integral

$$
\mathrm{M}=\mathrm{e}^{-\mathrm{x}} \sin \mathrm{y}
$$

$$
\text { and } \quad N=e^{-x} \cos y
$$

Then $\frac{\partial M}{\partial y}=e^{-x} \cos y$ and $\frac{\partial N}{\partial x}=-e^{-x} \cos y$
Hence by Green's theorem

$$
\begin{aligned}
\int_{C}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right] & =\iint_{\mathrm{R}}\left(-e^{-x} \cos y-e^{-x} \cos y\right) d x d y \\
& =-2 \int_{x-0}^{\pi} \int_{y-0}^{\pi / 2} e^{-x} \cos y d x d y \\
& =-2\left[-e^{-x}\right][\sin y]_{0}^{\pi / 2} \\
& =2\left(\mathrm{e}^{-\pi}-1\right)(1) \\
& =2\left(\mathrm{e}^{-\pi}-1\right)
\end{aligned}
$$

InIET

Evaluation of line integral:

For this purpose, letus evaluate the given line integral directly.

$$
\begin{aligned}
\int_{C} & {\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right] } \\
= & \int_{O A}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right]+\int_{A B}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right]+ \\
& \int_{B D}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right]+\int_{D O}\left[e^{-x} \sin y d x+e^{-x} \cos y d y\right]
\end{aligned}
$$

Now along $\mathrm{OA}, \mathrm{y}=0 \quad \Rightarrow \quad \mathrm{dy}=0$

$$
\begin{array}{lll}
\text { along } A B, x=\pi & \Rightarrow & d x=0 \\
\text { alongBD, } y=\pi / 2 & \Rightarrow & d y=0 \\
\text { alongDO, } x=0 & \Rightarrow & d x=0
\end{array}
$$

Hence the given line integral

$$
\begin{aligned}
& =0+\int_{0}^{\pi / 2} e^{-\pi} \cos y d y+\int_{\pi}^{0} e^{-d x}+\int_{\pi / 2}^{0} \cos y d y \\
& =e^{-\pi}[\sin y]_{0}^{\pi / 2}+\left[-e^{-x}\right]_{\pi}^{0}+[\sin y]_{\pi / 2}^{0} \\
& =\mathrm{e}^{-\pi}-\left(1-\mathrm{e}^{-\pi}\right)+(-1)^{0}=2\left(\mathrm{e}^{-\pi-1}\right)
\end{aligned}
$$

Hence Green's theorem is verified.

Example 2

State and verify Green's Theorem in the plane for $\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region bounded by $x \geq 0, y \leq 0$ and $2 x-3 y=6$.

Solution

Here the closed curve C consists of straight lines $O B, B A$ and $A O$, where coordinates of A and B are $(3,0)$ and $(0,-2)$ respectively. Let R be the region bounded by C.

Then by Green's Theorem in plane, we have
$\oint\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$
$=\iint_{R}\left[\frac{\partial}{\partial x}(4 y-6 x y)-\frac{\partial}{\partial y}\left(3 x^{2}-8 y^{2}\right)\right] d x d y$

miet

$$
\begin{align*}
& =\iint_{R}(-6 y+16 y) d x d y=\iint_{R} 10 y d x d y \\
& =10 \int_{0}^{3} d x \int_{\frac{1}{3}(2 x-6)^{0}}^{0} y d y=10 \int_{0}^{3} d x\left[\frac{y^{2}}{2}\right]_{\frac{1}{3}(2 x-6)}^{0}=-\frac{5}{9} \int_{0}^{3} d x(2 x-6)^{2} \\
& =-\frac{5}{9}\left[\frac{(2 x-6)^{3}}{3 \times 2}\right]_{0}^{3}=-\frac{5}{54}(0+6)^{3} \quad=-\frac{5}{54}(216)=-20 \tag{2}
\end{align*}
$$

Now we evaluate L.H.S. of (1) along $O B, B A$ and $A O$.
Along $O B, x=0, d x=0$ and y varies form 0 to -2 .
Along $B A, x=\frac{1}{2}(6+3 y), d x=\frac{3}{2} d y$ and y varies from -2 to 0 . and along $A O, y=0, d y=0$ and x varies from 3 to 0 .
L.H.S. of $(1)=\Phi\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$

$$
=\int_{O B}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]+\int_{B A}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 x-6 x y) d y\right]
$$

$$
+\int_{A O}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]
$$

$$
=\int_{0}^{-2} 4 y d y+\int_{-2}^{0}\left[\frac{3}{4}(6+3 y)^{2}-8 y^{2}\right]\left(\frac{3}{2} d y\right)+[4 y-3(6+3 y) y] d y+\int_{3}^{0} 3 x^{2} d x
$$

$$
=\left[2 y^{2}\right]_{0}^{-2}+\int_{-2}^{0}\left[\frac{9}{8}(6+3 y)^{2}-12 y^{2}+4 y-18 y-9 y^{2}\right] d y+\left(x^{3}\right)_{3}^{0}
$$

$$
=2[4]+\int_{-2}^{0}\left[\frac{9}{8}(6+3 y)^{2}-21 y^{2}-14 y\right] d y+(0-27)
$$

$$
=8+\left[\frac{9}{8} \frac{(6+3 y)^{3}}{3 \times 3}-7 y^{3}-7 y^{2}\right]_{-2}^{0}-27=-19+\left[\frac{216}{8}+7(-2)^{3}+7(-2)^{2}\right]
$$

$$
\begin{equation*}
=-19+27-56+28=-20 \tag{3}
\end{equation*}
$$

With the help of (2) and (3), we find that (1) is true and so Green's Theorem is verified.

Practice Questions

miet

1 Apply Green's Theoem to evaluate $\int_{c}[(y-\sin x) d y+\cos x d y]$, where c is the plane triangle enclosed by the lines $y=0, x=\frac{\pi}{2} \quad$ and $\quad y=\frac{2 x}{\pi}$.

Ans. $-\frac{\pi^{2}+8}{4 \pi}$
2 Use Green's Theorem in a plane to evaluate the integral $\int_{c}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$, where c is the boundary in the $x y$-plane of the area enclosed by the x-axis and the semi-circle $x^{2}+y^{2}=1$ in the upper half $x y$-plane. Ans. $\frac{4}{3}$
3 Green's Therorem, evaluate the line integral $\int_{c} e^{-x}(\cos y d x-\sin y d y)$, where c is the rectangle with vertices $(0,0),(\pi, 0),\left(\pi, \frac{\pi}{2}\right)$ and $\left(0, \frac{\pi}{2}\right) . \quad$ Ans. $2\left(1-e^{-\pi}\right)$

Use Green's theorem to evaluate $\int_{C}\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the
square formed by the lines $y= \pm 1, x= \pm 1$.
Ans: 0

Practice Questions

miet

1
Verify Green's Theorem in plane for $\int_{C}\left(x^{2}+2 x y\right) d x+\left(y^{2}+x^{3} y\right) d y$, where c is a square with the vertices $P(0,0), Q(1,0), R(1,1)$ and $S(0,1)$. Ans. $-\frac{1}{2}$

2 Verify Green's Theorem for $\int_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$ where C is the boundary by $y=x$ and $y=x^{2}$.

3 Verify Green's Theorem for $\int_{c}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$ around the boundary c of the region $y^{2}=8 x$ and $x=2$.

4 Verify the Green's Theorem to evaluate the line integral $\int_{c}\left(2 y^{2} d x+3 x d y\right)$, where c is the boundary of the closed region bounded by $y=x$ and $y=x^{2}$.

Ans. $\frac{27}{4}$

miet

Lecture 42(I)

Stoke's Theorem and It's Applications I

Stoke's Theorem

Surface integral of the component of curl \vec{F} along the normal to the surface S, taken over the surface S bounded by curve C is equal to the line integral of the vector point function
\vec{F} taken along the closed curve C.
Mathematically

$$
\oint \vec{F} \cdot d \vec{r}=\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} d s
$$

where \hat{n} is a unit external normal to the surface.

Stokes' Theorem relates a surface integral over an open surface S to a line integral around the boundary curve of S (a space curve).

Example 1

URIDt

Using Stoke's theorem or otherwise, evaluate

$$
\int_{C}\left[(2 x-y) d x-y z^{2} d y-y^{2} z d z\right]
$$

where c is the circle $x^{2}+y^{2}=1$, corresponding to the surface of sphere of unit radius.

Solution

$$
\begin{aligned}
& \int_{c}\left[(2 x-y) d x-y z^{2} d y-y^{2} z d z\right] \\
& \quad=\int_{c}\left[(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k}\right] \cdot(\hat{i} d x+\hat{j} d y+\hat{k} d z)
\end{aligned}
$$

By Stoke's theorem $\oint \vec{F} \cdot d \vec{r}=\iint_{S} \operatorname{Curl} \vec{F} \cdot \vec{n} d s$

miet

$\operatorname{Curl} \vec{F}=\nabla \times \vec{F}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2 x-y & -y z^{2} & -y^{2} z\end{array}\right|$
$=(-2 y z+2 y z) \hat{i}-(0-0) \hat{j}+(0+1) \hat{k}=\hat{k}$

Putting the value of curl \vec{F} in (1), we get
$=\iint \hat{k} \cdot \hat{n} d s=\iint \hat{k} \cdot \hat{n} \frac{d x d y}{\hat{n} \cdot \hat{k}}=\iint d x d y=$ Area of the circle $=\pi$

$$
\left[\because d s=\frac{d x d y}{(\hat{n} \cdot \hat{k})}\right]
$$

Example 2

U1)

Verify Stoke's Theorem for the function

$$
\vec{F}=x^{2} \hat{i}-x y \hat{j}
$$

integrated round the square in the plane $z=0$ and bounded by the lines

$$
x=0, y=0, x=a, y=a \text {. }
$$

Solution

We have, $\vec{F}=x^{2} \hat{i}-x y \hat{j}$

$$
\begin{aligned}
\nabla \times \vec{F} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} & -x y & 0
\end{array}\right| \\
& =(0-0) \hat{i}-(0-0) \hat{j}+(-y-0) \hat{k}=-y \hat{k}
\end{aligned}
$$

$$
\text { (} \hat{n} \perp \text { to } x y \text { plane i.e. } \widehat{k} \text {) }
$$

miet

$\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d s=\iint_{S}(-y k) \cdot k d x d y$

$$
\begin{equation*}
=\int_{0}^{a} d x \int_{0}^{a}-y d y=\int_{0}^{a} d x\left[-\frac{y^{2}}{2}\right]_{0}^{a}=-\frac{a^{2}}{2}(x)_{0}^{a}=-\frac{a^{3}}{2} \tag{1}
\end{equation*}
$$

To obtain line integral

$$
\int_{C} \vec{F} \cdot \vec{d} r=\int_{C}\left(x^{2} \hat{i}-x y \hat{j}\right) \cdot(\hat{i} d x+\hat{j} d y)=\int_{C}\left(x^{2} d x-x y d y\right)
$$

where $c \stackrel{C}{C}$ is the path ${ }_{O}^{C} A B C O$ as shown in the figure.
Also, $\quad \int_{C} \vec{F} \cdot \vec{d} r=\int_{O A B C O} \vec{F} \cdot d r=\int_{O A} \vec{F} \cdot d r+\int_{A B} \vec{F} \cdot d r+\int_{B C} \vec{F} \cdot d r+\int_{C O} \vec{F} \cdot d r$

Diet

Along " $O A, y=0, d y=0$

$$
\int_{O A} \vec{F} \cdot \vec{d} r=\int_{O A}\left(x^{2} d x-x y d y\right)
$$

Along $\quad A B, x=a, d x=0$

$$
=\int_{0}^{a} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{a}=\frac{a^{3}}{3}
$$

$$
\begin{aligned}
\int_{A B} \vec{F} \cdot \overrightarrow{d r} & =\int_{A B}\left(x^{2} d x-x y d y\right) \\
& =\int_{0}^{a}-a y d y=-a\left[\frac{y^{2}}{2}\right]_{0}^{a}=-\frac{a^{3}}{2}
\end{aligned}
$$

Along $B C, \quad y=a, d y=0$

miet

$$
\int_{B C} \vec{F} \cdot \overrightarrow{d r}=\int_{B C}\left(x^{2} d x-x y d y\right)=\int_{a}^{0} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{a}^{0}=-\frac{a^{3}}{3}
$$

Along $C O, \quad x=0, d x=0$

$$
\int_{C O} \vec{F} \cdot \overrightarrow{d r}=\int_{C O}\left(x^{2} d x-x y d y\right)=0
$$

Putting the values of these integrals in (2), we have

$$
\begin{equation*}
\int_{C} \vec{F} \cdot \overrightarrow{d r}=\frac{a^{3}}{3}-\frac{a^{3}}{2}-\frac{a^{3}}{3}+0=-\frac{a^{3}}{2} \tag{3}
\end{equation*}
$$

From (1) and (3), $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d s=\int_{C} \vec{F} \cdot \overrightarrow{d r}$
Hence, Stoke's Theorem is verified.

Example 3

URIDE

Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where $F(x, y, z)=-y^{2} \hat{i}+x \hat{j}+z^{2} \hat{k}$ and C is the curve of intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$.

Solution

$$
\begin{equation*}
\Phi_{C} \vec{F} \cdot \overrightarrow{d r}=\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} d s=\iint_{S} \operatorname{curl}\left(-y^{2} \hat{i}+x \hat{j}+z^{2} \hat{k}\right) \cdot \hat{n} d s \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
F(x, y, z) & =-y^{2} \hat{i}+x \hat{j}+z^{2} \hat{k} \\
\text { Curl } \vec{F} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y^{2} & x & z^{2}
\end{array}\right|=\hat{i}(0-0)-\hat{j}(0-0)+\hat{k}(1+2 y)=(1+2 y) \hat{k}
\end{aligned}
$$

Normal vector $=\nabla \vec{F}$
$=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right)(y+z-2)=\hat{j}+\hat{k}$
Unit normal vector $\hat{n} \quad=\frac{\hat{j}+\hat{k}}{\sqrt{2}}$

$$
d s=\frac{d x d y}{\hat{n} \cdot \hat{k}}
$$

On putting the values of curl \vec{F}, \hat{n} and $d s$ in (1), we get

$$
\int_{C} \vec{F} \cdot \overrightarrow{d r}=\iint_{S}(1+2 y) \hat{k} \cdot \frac{\hat{j}+\hat{k}}{\sqrt{2}} \frac{d x d y}{\left(\frac{\hat{j}+\hat{k}}{\sqrt{2}}\right) \cdot \hat{k}}
$$

$$
=\iint \frac{1+2 y}{\sqrt{2}} \frac{d x d y}{\frac{1}{\sqrt{2}}}=\iint(1+2 y) d x d y
$$

miet

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{1}(1+2 r \sin \theta) r d \theta d r \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(r+2 r^{2} \sin \theta\right) d \theta d r \\
& =\int_{0}^{2 \pi} d \theta\left[\frac{r^{2}}{2}+\frac{2 r^{3}}{3} \sin \theta\right]_{0}^{1}=\int_{0}^{2 \pi}\left[\frac{1}{2}+\frac{2}{3} \sin \theta\right] d \theta \\
& =\left[\frac{\theta}{2}-\frac{2}{3} \cos \theta\right]_{0}^{2 \pi}=\left(\pi-\frac{2}{3}-0+\frac{2}{3}\right)=\pi
\end{aligned}
$$

Example 3

リ1) D-

Verify Stoke's Theorem for $\vec{F}=(x+y) \hat{i}+(2 x-z) \hat{j}+(y+z) \hat{k}$ for the surface of a triangular lamina with vertices $(2,0,0),(0,3,0)$ and $(0,0,0)$.

Solution

Here the path of integration c consists of the straight lines $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ where the co-ordinates of A, B, C and $(2,0,0),(0,3,0)$ and $(0,0,6)$ respectively. Let S be the plane surface of triangle ABC bounded by C. Let \hat{n} be unit normal vector to surface S. Then by Stoke's Theorem, we must have
$\oint_{c} \vec{F} \cdot \overrightarrow{d r}=\iint_{s} \operatorname{curl} \vec{F} \cdot \hat{n} d s$

L.H.S. of $(1)=\int_{A B C} \vec{F} \cdot \overrightarrow{d r}=\int_{A B} \vec{F} \cdot \overrightarrow{d r}+\int_{B C} \vec{F} \cdot \overrightarrow{d r}+\int_{C A} \vec{F} \cdot \overrightarrow{d r}$

Milet

 Along line $A B, z=0$, equation of $A B$ is $\frac{x}{2}+\frac{y}{3}=1$$$
\begin{aligned}
& \Rightarrow \quad y=\frac{3}{2}(2-x), d y=-\frac{3}{2} d x \\
& \text { At } A, x=2, \text { At } B, x=0, \bar{r}=x \hat{i}+y \hat{j}
\end{aligned}
$$

$$
\begin{aligned}
\int_{A B} \vec{F} \cdot \overrightarrow{d r} & =\int_{A B}[(x+y) \hat{i}+2 x \hat{j}+y \hat{k}] \cdot(\hat{i} d x+\hat{j} d y) \\
& =\int_{A B}(x+y) d x+2 x d y \\
& =\int_{A B}\left(x+3-\frac{3 x}{2}\right) d x+2 x\left(-\frac{3}{2} d x\right) \\
& =\int_{2}^{0}\left(-\frac{7 x}{2}+3\right) d x=\left(-\frac{7 x^{2}}{4}+3 x\right)_{2}^{0} \\
& =(7-6)=+1
\end{aligned}
$$

line	Eq. of line		Lower limit	Upper limit			
$A B$	x 2$+\frac{y}{3}=1$						
$z=0$					$	d y=-\frac{3}{2} d x \quad$	At A
:---:							
$x=2$		At B					
:---:							
$x=0$							

miet

Along line $B C, x=0$, Equation of $B C$ is $\frac{y}{3}+\frac{z}{6}=1$ or $z=6-2 y, d z=-2 d y$ At $B, y=3$, At $C, y=0, \vec{r}=y \hat{j}+z \hat{k}$

$$
\begin{gathered}
\int_{B C} \vec{F} \cdot \overrightarrow{d r}=\int_{B C}[y i+z j+(y+z) k] \cdot(j d y+k d z)=\int_{B C}-z d y+(y+z) d z \\
=\int_{3}^{0}(-6+2 y) d y+(y+6-2 y)(-2 d y) \\
=\int_{3}^{0}(4 y-18) d y=\left(2 y^{2}-18 y\right)_{3}^{0}=36
\end{gathered}
$$

line	Eq. of line		Lower limit	Upper limit
$B C$	y $\frac{y}{3}+\frac{z}{6}=1$ $x=0$	$d z=-2 d y$	At B $y=3$	At C $y=0$

line	Eq. of line		Lower limit	Upper limit
CA	$\begin{gathered} \frac{x}{2}+\frac{z}{6}=1 \\ y=0 \end{gathered}$	$d z=-3 d x$	At C $x=0$	At A $x=2$

Miet

Along line CA, $y=0$, Eq. of CA, $\frac{x}{2}+\frac{z}{6}=1$ or $z=6-3 x, d z=-3 d x$
At $\mathrm{C}, x=0$, at $\mathrm{A}, x=2, \vec{r}=x \hat{i}+z \hat{k}$

$$
\begin{aligned}
\int_{C A} \vec{F} \cdot \overrightarrow{d r} & =\int_{C A}[x \hat{i}+(2 x-z) \hat{j}+z \hat{k}] \cdot[d x \hat{i}+d z \hat{k}]=\int_{C A}(x d x+z d z) \\
& =\int_{0}^{2} x d x+(6-3 x)(-3 d x)=\int_{0}^{2}(10 x-18) d x=\left[5 x^{2}-18 x\right]_{0}^{2}=-16
\end{aligned}
$$

miet

Lecture 42(II)

Stoke's Theorem and It's Applications II

Q.1:, Evaluate $\oint_{c} \vec{f} \cdot d \vec{r}$ by Stoke's theorem, where:
$\vec{F}=y^{2} \hat{\imath}+x^{2} \hat{\jmath}-(x+2) \hat{k}$ and c is the bounders of triangle with vertices et $(0,0,0),(1,0,0)$ and $(1,1,0)$.
Sol": Since z-coordinates of each vertex of the triangle is zero, therefore, the triangle lies in the ry-plane and $\hat{n}=\hat{k}$

$$
\begin{aligned}
& \operatorname{curl} \vec{k}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{y} & \hat{k} \\
\frac{2}{2 x} & \frac{2}{2 y} & \frac{2}{2 z} \\
y^{2} & x^{2} & -(x+2)
\end{array}\right|=\hat{j}+2(x-y) \hat{k} \\
& \therefore \operatorname{curl} \vec{k} \cdot \hat{\eta}=[\hat{j}+2(x-y) \hat{k}] \cdot \hat{k}=2(x-y)
\end{aligned}
$$

The equation of line $O B$ ie $y=x$.

By Stoke's theorem,

$$
\begin{aligned}
\oint_{c} \vec{F} \cdot d \vec{r} & =\iint_{s} c \operatorname{cur} \vec{F} \cdot \hat{x} d s \\
& =\int_{0}^{1} \int_{0}^{x} 2(x-y) d y d x=\int_{0}^{1} 2\left[x y-\frac{y^{2}}{2}\right]_{0}^{x} d x \\
& =2 \int_{0}^{1}\left(x^{2}-\frac{x^{2}}{2}\right) d x=\int_{0}^{1} x^{2} d x=\frac{1}{3}
\end{aligned}
$$

Q.2:- Verify Stokes theorem for $\vec{F}=\left(x^{2}+y^{2}\right) \hat{\imath}-2 x y \hat{\jmath}$ taken around the rectangle bounded by the lines $x= \pm a, y=0$ and $y=b$.
Self; let C denote the boundary of the rectangle $A B E D$, then

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot d \vec{r} & \left.=\oint_{c}\left[\left(x^{2}+y^{2}\right) \hat{\imath}-2 x y\right]\right]\left(i^{i} d x+j d y\right) \\
& =\oint_{C}\left[\left(x^{2}+y^{2}\right) d x-2 x y d y\right]
\end{aligned}
$$

The curve C consists of four lines $A B, B E, E D$ and $D A$. Along $A B, x=a, d x=0$ and y varies from 0 to b

$$
\begin{equation*}
\therefore \int_{A B}\left[\left(x^{2}+y^{2}\right) d x-2 x y d y\right]=\int_{0}^{b}-2 a y d y=-a\left[y^{2}\right]_{0}^{b}=-a b^{2} \tag{1}
\end{equation*}
$$

Along $B E, y=b, d y=0$ and x varies from a to -a.

$$
\begin{gather*}
\therefore \int_{B E}\left[\left(x^{2}+y^{2}\right) d x-2 x y d y\right]=\int_{a}^{-a}\left(x^{2}+b^{2}\right) d x=\left[\frac{x^{3}}{3}+b^{2} x\right]_{a}^{-a} \\
=\frac{-2 a^{3}}{3}-2 a b^{2} \tag{2}
\end{gather*}
$$

Along EO, $x=-a, d x=0$ and y varies from b to 0 .

$$
\begin{equation*}
\therefore \quad \int_{E D}\left[\left(x^{2}+y^{2}\right) d x-2 x y d y\right]=\int_{b}^{0} 2 a y d y=a\left[y^{2}\right]_{b}^{0}=-a b^{2} \tag{3}
\end{equation*}
$$

Along $D A, y=0, d y=0$ and x varies from $-a$ to a.

$$
\begin{equation*}
\therefore \int_{D A}\left[\left(x^{2}+y^{2}\right) d x-2 d x d y\right]=\int_{-a}^{a} x^{2} d x=\frac{2 a^{3}}{3} \tag{4}
\end{equation*}
$$

Adding (1), (2), (3) and (4), we get

$$
\begin{equation*}
\oint_{c} \vec{F} \cdot d \vec{r}=-a b^{2}-\frac{2 a^{3}}{3}-2 a b^{2}-a b^{2}+\frac{2 a^{3}}{3}=-4 a b^{2} \tag{5}
\end{equation*}
$$

Now curl $\vec{f}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{2}{2 x} & \frac{2}{2 y} & \frac{\partial}{2 z} \\ x^{2}+y^{2} & -2 x y & 0\end{array}\right|=(-2 y-2 y) \hat{k}=-4 y \hat{k}$
For the surface $S, \hat{n}=\hat{k}$
curl $\vec{k} \cdot \hat{n}=-4 y \hat{k} \cdot \hat{k}=-4 y$

$$
\begin{align*}
\therefore \iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} d s & =\int_{0}^{b} \int_{-a}^{a}-4 y d x d y=\int_{0}^{b}-4 y[x]_{-a}^{a} d y \\
& =-8 a \int_{0}^{b} y d y=-8 a\left[\frac{y^{2}}{2}\right]_{0}^{b}=-4 a b^{2} \tag{C}
\end{align*}
$$

The equality of (5) and (b) verifies stoke's theorem.
Q.3: \rightarrow Verify stokes theorem $\vec{F}=(2 y+z ; x-z, y-x)$ taken over the triangle $A B C$ cut from the plane $x+y+z=1$ by the coordinates planes.
Sol: By Stoke's theorem

$$
\begin{equation*}
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \operatorname{curl} \vec{f} \cdot \hat{n} d s \tag{r}
\end{equation*}
$$

Taking LHS,

$$
\oint_{A B C} \vec{F} \cdot d \vec{r}=\int_{A B} \vec{F} \cdot d \vec{r}+\int_{B C} \vec{F} \cdot d \vec{r}+\int_{C A} \vec{F} \cdot d \vec{r}
$$

Along $A B, z=0, x+y=1, y=1-x, d y=-d x$ and $\vec{r}=x \hat{\imath}+y \hat{\jmath}$

$$
\begin{aligned}
& \int_{A B} \vec{F} \cdot d \vec{r}=\int_{A B}[2 y \hat{\imath}+x \hat{j}+(y-x) \hat{k}](\hat{i} d x+\hat{y} d y) \\
&=\int_{A B} 2 y d x+x d y=\int_{A B} 2(1-x) d x+x(-d x) \\
& \quad(\because y=1-x \text { and } d y=-d x)
\end{aligned}
$$

$$
=\int_{A B} 2 d x-2 x d x-x d x=\int_{1}^{0}(2-3 x) d x=\left[2 x-\frac{3 x^{2}}{2}\right]_{1}^{0}=-\frac{1}{2}
$$

Along $B C, x=0, y+z=1, z=-y, d z=-d y$ and $\vec{r}=y \hat{\jmath}+z \hat{k}$

$$
\begin{aligned}
\int_{B C} \vec{F} \cdot d \vec{r} & =\int_{B C}[(2 y+z) \hat{\imath}-z \hat{\jmath}+\vec{k} \hat{k}(\hat{\jmath} d y+\hat{k} d z) \\
& =\int_{B C}-z d y+y d z=\int_{B C}-(1-y) d y+y(-d y)=\int_{B C}-d y+y d y-y y y \\
& =\int_{1}^{0}-d y=[-y]_{1}^{0}=0-(-1)=1
\end{aligned}
$$

Along CA, $y=0, x+z=1 \Rightarrow x=1-z, d x=-d z$ and $\vec{r}=x \hat{i}+2 \hat{k}$

$$
\begin{aligned}
& \int_{C A} \vec{F} \cdot d \vec{r}=\int_{C A}[z \hat{\imath}+(x-z) \hat{j}-x \hat{k}](\hat{b} d x+\hat{k} d z)=\int_{C A} z d x-x d z \\
& \quad=\int_{C A} z(-d z)-(1-z) d z=\int_{A C}-z d z-d z+z d z=\int_{A C}-d z \\
& \quad=\int_{1}^{0}-d z=-[z]_{1}^{0}=-[0-1]=1
\end{aligned}
$$

Hence $\int_{A B} \vec{A} \cdot d \vec{r}=\frac{-1}{2}+1+1=\frac{3}{2}$
Now, curl $\vec{F}=\nabla \times \vec{F}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ \frac{2}{2 x} & \frac{2}{2 y} & \frac{2}{2 z} \\ 2 y+z & x-z & y-x\end{array}\right|$

$$
=\hat{\imath}[1-(-1)]-\hat{\jmath}[-1-1]+\hat{k}[1-2]=2 \hat{\imath}+2 \hat{\jmath}-\hat{k}
$$

Equation of the plane $A B C$ is $x+y+z=1$
Normal to the plane $A B C$ is

$$
\begin{aligned}
& \text { Ital so the plane } A B C \text { is } \\
& \nabla \phi=\left(\hat{\imath} \frac{2}{2 x}+\hat{\jmath} \frac{2}{2 y}+\hat{k} \frac{2}{2 z}\right)(x+y+z-1)=\hat{i}+\hat{\jmath}+\hat{k}
\end{aligned}
$$

Normal unit vector, $\hat{n}=\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
Now taking RHS of eq n (1)

$$
\begin{aligned}
& \iint_{S} \operatorname{curl} \hat{\vec{F}} \cdot \eta^{\hat{2}} d s=\iint_{s}(2 \hat{\imath}+2 \hat{j}-\hat{k})\left(\frac{\cdot \hat{\imath}+\hat{j}+\hat{k}}{\sqrt{3}} \quad \frac{d x d y}{\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k}) \hat{k}}\right) \\
& =\iint_{S} \frac{2+2-1}{\sqrt{3}} \frac{d x d y}{1 / \sqrt{3}}=3 \iint d x d y=3 x \text { area of } D A O B \\
& =3 \times \frac{1}{2} \times 1 \times 1=\frac{3}{2} \\
& \text { Verified }
\end{aligned}
$$

Q.4:7 Verify Stoke'c theorem for the vector field $\vec{F}=\left(x^{2}-y^{2}\right)^{4}+2 x y \hat{f}$ integrated round the rectangle in the plane $z=0$. and bounded by the lines $x=0, y=0, x=a, y=b$.
Sol: 1 Proceed as Q.2.
Q. 5 :, verify stoke' theorem for the function $\vec{F}=x^{2} \hat{i}+x y \hat{j}$ integrated round the square whose sides are $x=0, y=0$, $x=a, y=a$ in the plane $z=0$. (2020-21)
Solnढन Proceed as Q.2.

Practice Questions

Q1 Verify Stoke's Theorem for $\vec{F}=(x+y) \hat{i}+(2 x-z) \hat{j}+(y+z) \hat{k}$ for the surface of a triangular lamina with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$.

$$
\text { Ans: } \iint_{S} \operatorname{Curl} \vec{F} \cdot \hat{n} d S=\int_{C} \vec{F} \cdot \overrightarrow{d r} \quad=21 .
$$

Q2 Verify Stoke's Theorem for

$$
\vec{F}=(y-z+2) \hat{i}+(y z+4) \hat{j}-(x z) \hat{k}
$$

over the surface of a cube $x=0, y=0, z=0, x=2, y=2, z=2$ above the XOY plane (open the bottom).

Ans: - 4

Miet

Q3. Use Stokes' Theorem to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left(3 y x^{2}+z^{3}\right) \vec{i}+y^{2} \vec{j}+4 y x^{2} \vec{k}$ and C is triangle with vertices $(0,0,3),(0,2,0)$ and $(4,0,0)$. C has a counter clockwise rotation if you are above the triangle and looking down towards the xy-plane.See the figure below for a sketch of the curve.

Ans -5

Q 4 Verify Stoke's theorem $\bar{F}=y \hat{i}+z \hat{j}+x \hat{k}$ and Surface S is the portion of the sphere for $x^{2}+y^{2}+z^{2}=1$ above the $x y$-Plane.

Ans: $-\pi$

