Course: B.Tech
Subject Name: Elementary Mathematics -1
Subject Code: BBT101
Semester: I

CO No.	Lect. No.	Syllabus Topic (As Per LP)	Ques. No.	Question Statement (As Per AKTU)	Session
1	6	Algebraic solution of linear inequalities in one variable	1	Solve $5 x-3<3 x-1$, when x is a real number.(Very short)	2021-22
1	1	Fundamental Theorem of Algebra	2	State Fundamental theorem of Algebra.(Very Short)	$\begin{gathered} 2011-12 \\ 2013-14 \\ 2018-19 \\ 2021-22 \\ 2022-23 \end{gathered}$
1	6,7	Algebraic solution of linear inequalities in one variable, and their representation on number line.	3	Solve $\frac{3 x-4}{2} \geq \frac{x+1}{4}-1$. Also represent the solution set on number line. (Short)	2021-22
1	3	Solution of Quadratic equation by Discriminant formula	4	Solve the equation $x^{2}+2 x+2=0$ (Long)	2021-22
1	8	Graphical solution of linear inequalities in two variables	5	Exhibit graphically the solution set of linear inequalities $3 x+$ $4 y \geq 12, x \geq 0, y \geq 1$. (Long)	2021-22
1	2	Solution of Quadratic equation by Factorization formula	6	Solve the quadratic equation: $x^{2}-11 x+30=0$. (very short)	2022-23
1	6	Algebraic solution of linear inequalities in one variable	7	Solve the inequality: $\frac{1}{2}\left(\frac{3}{5} x+4\right) \geq \frac{1}{3}(x-6)$. (short)	2022-23
1	8	Graphical solution of linear inequalities in two variables	8	Find the area of the region represented by linear inequalities: $\|x-y\| \leq 3$ and $\|x+y\| \leq 3$. (long)	2022-23
1	8	Graphical solution of linear inequalities in two variables	9	Solve the system of linear inequalities $y \geq-x-1, y \leq 2 x+$ 1, by graphical method.	2022-23
1	3	Solution of Quadratic equation by Discriminant formula	10	Solve the equation: $x^{2}+3 x+5=0$	$\begin{gathered} \text { 2011-12 } \\ \text { (Long) } \end{gathered}$

1	3	Solution of Quadratic equation by Factorization formula	11	For what value of $k,(4-k) x^{2}+(2 k+4) x+(8 k+1)=0$	$\begin{gathered} \text { 2018-19 } \\ \text { (Long) } \end{gathered}$
1	3	Solution of Quadratic equation by Factorization formula	12	Solve: $x^{2}-1=0$	2019-20 (Short)
1	3	Solution of Quadratic equation by Factorization formula	13	Solve: $(x+1)(x-2)+x=0$	$\begin{gathered} \text { 2020-21 } \\ \text { (Long) } \end{gathered}$
1	6	Algebraic solution of linear inequalities in one variable	14	Define linear inequality in one variable.	
1	6	Algebraic solution of linear inequalities in one variable	15	Solve: $5 x-3<3 x+1$	2011-12 (Short)
1	6	Algebraic solution of linear inequalities in one variable	16	Solve the linear inequality $4 x+3<5 x+7$	2015-16 (Short)
1	6	Algebraic solution of linear inequalities in one variable	17	Solve: $5 x-3<3 x-1$ when x is a real number.	$\begin{gathered} \text { 2020-21 } \\ \text { (Long) } \end{gathered}$
1	6	Algebraic solution of linear inequalities in one variable	18	Solve: $\frac{(2 x+4)}{(x-1)} \geq 5$.	$\begin{gathered} \text { 2020-21 } \\ \text { (Long) } \end{gathered}$
1	8	Graphical solution of linear inequalities in two variables	19	Solve the inequality graphically $\|y-x\| \leq 3$	2019-20 (Long)
1	6	Algebraic solution of linear inequalities in one variable	20	Solve the inequality: $x-4 \geq 10$	2020-21 (Short)
1	7	Algebraic solution of linear inequalities in one variable and their representation on number line.	21	Solve $\frac{3 x-4}{2} \geq \frac{x+1}{4}-1$. Show that the graph of the solution on the number line.	2011-12 (Short) (Short)
1	7	Algebraic solution of linear inequalities in one variable and their representation on number line.	22	Solve the system of inequalities: $\begin{aligned} & 3 x-7<5+x \\ & 11-5 x \leq 1 \end{aligned}$ And represent the solutions on the number line.	$\begin{gathered} \text { 2011-12 } \\ \text { (Long) } \end{gathered}$
1	7	Algebraic solution of linear inequalities in one variable and their representation on number line.	23	Solve the inequality and represent it on number line: $\begin{aligned} & 5(2 x-7)-3(2 x+3) \leq 0, \\ & 2 x+19 \leq 6 x+47 \end{aligned}$	$\begin{gathered} \text { 2018-19 } \\ \text { (Long) } \end{gathered}$

| 1 | $\mathbf{8}$ | Graphical solution of linear inequalities in
 two variable | $\mathbf{2 4}$ | Solve the following system of inequalities by graphical method:
 $2 x+y \geq 6,3 x+4 y \leq 12$ |
| :---: | :---: | :--- | :---: | :--- | :--- |
| 1 | $\mathbf{8}$ | Graphical solution of linear inequalities in
 two variable | $\mathbf{2 5}$ | Exhibit graphically the solution set of linear inequalities:
 $3 x+4 y \geq 12, x \geq 0, y \geq 1$ |

CO-Wise AKTU Question Bank

CO No.	Lect. No.	Syllabus Topic (As Per LP)	Ques. No.	Question Statement (As Per AKTU)	Session
2	10	Sum of n terms of A.P.	1	Find the sum of $3+6+9 \ldots+30$. (very short)	2021-22
2	12	Geometric mean	2	Find the geometric mean between 1 and $\frac{9}{16}$. (very short)	2021-22
2	14	Sum of n terms and infinite terms of G.P.	3	Given a G.P. with $a=727$ and $7^{\text {th }}$ is 64. Determine S_{7}. (short)	2021-22
2	15	Some numerical problems	4	Is 184 a term of the sequence $3,7,11, \ldots$?	2019-20
2	9	A.P. and its general terms	5	Find the total no. of terms in arithmetic progression 3, 5, 7, ... , 51. (very short)	2022-23
2	15	Some numerical problems	6	Find the sum of the series $0.7+0.77+0.777+\ldots$ up to 20 terms. (short)	2022-23
2	13	G.P. and its general term	7	Find the third term form the last of geometric progression. $\frac{2}{27}, \frac{2}{9}, \frac{2}{3} \ldots$ 162. (long)	2022-23
2	11	Some numerical problems related to A.P.	8	If S_{n} denotes the sum of first n terms of A.P. and find the value of $\frac{S_{3 n}-S_{n-1}}{S_{2 n}-S_{2 n-1}}$	2022-23
2	10	Sum of n terms of A.P.	9	Which term of the A.P.: $3,8,13, \ldots \ldots$. is 248 ?	2011-12 (Short)
2	10	Sum of n terms of A.P.	10	Find the nth term of an A.P 5,8,11,.......	2015-16 (Short)
2	10	Sum of n terms of A.P.	11	Which term of the A.P. $3,8,13, \ldots$ is 248 ?	2018-19 (Short)
2	10	Sum of n terms of A.P.	12	Which term of the A.P.: $3,8,13, \ldots$ is 78 ?	$\begin{gathered} \text { 2020-21 } \\ \text { (Long) } \end{gathered}$

| 2 | $\mathbf{9}$ | A.P. and its general terms | $\mathbf{1 3}$ | If $a_{n}=5-11 n$ find the common difference. |
| :---: | :---: | :--- | :--- | :--- | :--- |

2	14	Sum of n terms and infinite terms of G.P.	27	Find the sum to n terms of the series whose $n^{t h}$ term is $n(n+3)$.
(Long)				

CO-Wise AKTU Question Bank

Course: B.Tech

Subject Name: Elementary Mathematics -I
Subject Code: BBT101
Semester: I

CO No.	Lect. No.	Syllabus Topic (As Per LP)	Ques. No.	Question Statement (As Per AKTU)	Session
3	27	Standard equation of circle	1	Find the equation of circle whose center is $(2,3)$ and radius 5 . (very short)	$\begin{gathered} \text { 2021- } \\ 22,2022-23 \end{gathered}$
3	28	Standard equation of parabola	2	Write the focus of parabola $x^{2}=4 y$. (very short)	2021-22
3	20	Point slope form, Intercept form	3	Reduce the following equation into slope-intercept form and intercept form : $3 x-4 y=12$. (short)	2021-22
3	25	Distance of a point from line	4	Find the distance of the point $(4,1)$ from the line $3 x-4 y+$ $12=0$. (long)	2021-22
3	27	Properties of Ellipse	5	Find the length of major and minor axis, co-ordinates of foci and length of latus rectum for the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. (long)	2021-22
3	17	Straight lines	6	Find the slope of straight line passing through a point $A(-3,6)$ and the mid-point of the line joining the points $B(4,-5)$ and $C(-2$, 9). (very short)	2022-23
3	25	Distance of a point	7	Let $A(1,1)$ and $B(3,2)$ be the two points. If C is a point on x-axis such that $A C+B C$ is minimum then find co-ordinates of C. (long)	2022-23
3	28	Standard equation of parabola	8	Show that the equation $16 x^{2}+y^{2}+8 x y-74 x-78 y+$ $212=0$. (long)	2022-23
3	24	Pair of intersecting lines	9	Find the coordinates of the point which divides the line segment joining the points ($1,-2,3$) and ($3,4,-5$) in the ratio $2: 3$ externally.	2011-12 (Long)
3	25	Distance of a point from line	10	Show that the points $A(1,2,3), B(3,4,7)$ and $C(-3,-2,-5)$ are collinear.	2011-12 (Short)

3	25	Distance of a point from line	11	Find the value of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear.	$\begin{gathered} \text { 2011-12 } \\ \text { (Long) } \end{gathered}$
3	17	Condition of parallel and perpendicularity between two lines	12	Find the value of y so that the line through $(3, y)$ and $(2,7)$ is parallel to the line through $(-1,4)$ and $(0,6)$	2011-12 (Short)
3	17	Condition of parallel and perpendicularity between two lines	13	Find the equation of line parallel to the line $3 x-4 y+2=0$ and passing through the point $(-2,3)$.	$\begin{gathered} \text { 2018-19 } \\ \text { (Long) } \end{gathered}$
3	17	Condition of parallel and perpendicularity between two lines	14	Write the condition of perpendicularity of two lines.	2019-20 (Short)
3	18	Angle between two lines	15	If the angle between two lines is $\pi / 4$ and the slope of one line $1 / 2$, find the slope of the other line.	$\begin{gathered} \text { 2020-21 } \\ \text { (Long) } \end{gathered}$
3	20	Point slope form, Intercept form	16	Write the equation of straight line in point slope form.	2019-20 (Short)
3	20	Point slope form, Intercept form	17	Find the equation of straight line joining the points $(-1,3)$ and $(4,-2)$.	$\begin{gathered} \text { 2019-20 } \\ \text { (Long) } \end{gathered}$
3	20	Point slope form, Intercept form	18	Find the equation of line passing through the point $(2,2)$ and cutting off intercepts on the axis whose sum is 9 .	2015-16 (Long)
3	20	Point slope form, Intercept form	19	Find the equation of the straight line which passes through the point $(3,4)$ and the intercept made by this line on y-axis is two times the intercept on x-axis.	$\begin{gathered} \text { 2013-14 } \\ \text { (Long) } \end{gathered}$
3	20	Point slope form, Intercept form	20	Find the equation of line in intercept form.	2018-19 (Short) (Short)
3	21	Equation of a line in normal form	21	Reduce the following equations into normal form and find their perpendicular distances from the origin (i) $\quad x-\sqrt{3} y+8=0$ $y-2=0$	$\begin{gathered} \text { 2018-19 } \\ \text { (Long) } \end{gathered}$
3	27	Standard equation of circle	22	Does the point (5/2,7/2) lie inside, outside or on the circle $x^{2}+y^{2}=25$?	$\begin{gathered} \text { 2011-12 } \\ \text { (Long) } \end{gathered}$

3	27	Standard equation of circle	23	Find the centre and radius of the circle $x^{2}+y^{2}-4 x+6 y=12$	$\begin{gathered} \text { 2011-12 } \\ \text { (Short) } \end{gathered}$
3	27	Standard equation of circle	24	Find the equation of the circle whose radius is 5 and which touches externally the circle $x^{2}+y^{2}-2 x-4 y=20$ at the point $(5,5)$.	$\begin{gathered} \text { 2011-12 } \\ \text { (Long) } \end{gathered}$
3	27	Standard equation of circle	25	Find the equation of the circle which passes through the points $(0,1),(1,0)$ and (2,1).Also find its radius and coordinate of the center.	$\begin{gathered} \text { 2013-14 } \\ \text { (Long) } \end{gathered}$
3	27	Standard equation of circle	26	Find the equation of circle whose center is (3,2) and radius is 5.	$\begin{gathered} \text { 2015-16 } \\ \text { (Short) } \end{gathered}$
3	27	Standard equation of circle	27	Find the equation of circle passing through $(4,1)$ and $(6,5)$, whose center is on the line $4 x+y=16$	$\begin{gathered} \text { 2018-19 } \\ \text { (Long) } \end{gathered}$
3	27	Standard equation of circle	28	Find the equation of circle whose center is $(2,3)$ and radius is 8 .	$\begin{gathered} 2020-21 \\ \text { (Short) } \end{gathered}$
3	27	Standard equation of circle	29	Find the equation of circle, the coordinates of whose diameter are $(-1,2)$ and $(4,-3)$.	$\begin{gathered} \text { 2020-21 } \\ \text { (Long) } \end{gathered}$
3	28	Standard equation of parabola	30	Write the focus of the parabola: $x^{2}=8 y$.	$\begin{gathered} \hline \text { 2018-19 } \\ 2020-21 \\ \text { (Short) } \\ \hline \end{gathered}$
3	28	Standard equation of parabola	31	Find the equation of parabola whose focus is the point $(-1,-2)$ and whose directrix is straight line $x-2 y+3=0$	$\begin{gathered} \hline \text { 2019-20 } \\ \text { 2020-21 } \\ \text { (Long) } \end{gathered}$
3	28	Standard equation of parabola	32	Find eccentricity, co-ordinate of foci and length of latus rectum for the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$	$\begin{gathered} \text { 2015-16 } \\ \text { (Long) } \end{gathered}$
3	28	Standard equation of hyperbola	33	Find the equation of the hyperbola whose foci are $(0, \pm 12)$ and the length of the latus rectum is 36	$\begin{gathered} \text { 2011-12 } \\ \text { (Long) } \end{gathered}$
3	28	Standard equation of hyperola	34	Find the equation of hyperbola having directrix $x+2 y=1$,focus(2,1) and eccentricity 2.	$\begin{gathered} \text { 2013-14 } \\ \text { (Long) } \end{gathered}$

Course: B.Tech

CO No.	Lect. No.	Syllabus Topic (As Per LP)	Ques. No.	Question Statement (As Per AKTU)	Session
4	32	Derivative of sum and Product functions	1	If $y=\left(1-2 x^{2}\right) \operatorname{Sin} x$ then find $\frac{d y}{d x}$	2022-23
4	37	Derivatives of Parametric forms	2	If $\mathrm{y}=\operatorname{Cot}\left(\cos ^{-1} \mathrm{x}\right)$ then find $\frac{d y}{d x}$	2022-23
4	38	Derivatives of polynomial	3	Find the differential coefficient of $x^{2} \tan ^{2} x$ with respect to $\log _{e} x$.	2022-23
4	38	Derivatives of polynomial, parametric forms	4	If $\mathrm{x}=\sqrt{a^{\operatorname{Sin}^{-1} t}}$ and $\mathrm{y}=\sqrt{a^{\cos ^{-1} t}}$ the prove that $\frac{d y}{d x}=\frac{-y}{x}$	2022-23
4	31	Differentiability	5	If $\mathrm{y}=\operatorname{Sin} \mathrm{x}$ then find $\frac{d y}{d x}$ at $\mathrm{x}=0$	2021-22
4	29	Introduction, Definition of limit	6	Evaluate: $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$	2021-22
4	29	Introduction, Definition of limit	7	Evaluate: $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 2 x}$	2021-22
4	39	Differentiability Logarithmic differentiation.	8	$\text { Find } \frac{d y}{d x} \text { ify }=\operatorname{Sin} \sqrt{1+\log (\tan x)}$	2021-22
4	30	Continuity	9	Find the value of k so that the function f is continuous at indicated value of $\mathrm{f}(\mathrm{x})=f(x)=\left\{\begin{array}{l}k x, x \leq 2 \\ 3, x>2\end{array}\right\}$	2021-22
4	29	Introduction, Definition of limit	10	Evaluate: $\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{4 x}\right)$.	$\begin{gathered} 2020-21 \\ \text { (Short) } \end{gathered}$
4	29	Introduction, Definition of limit	11	Evaluate the given limit: $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$	$\begin{gathered} \text { 2018-19 } \\ \text { (Short) } \end{gathered}$

4	29	Introduction, Definition of limit	12	Find $\lim _{x \rightarrow 0} f(x)$, where $f(x)= \begin{cases}\frac{\|x\|}{x}, & x \neq 0 \\ 0, & x=0\end{cases}$	$\begin{gathered} \text { 2018-19 } \\ \text { (Long) } \end{gathered}$
4	34	Derivatives of polynomial	13	Find the derivative of $x^{2}-2$ at $x=100$.	2018-19 (Short)
4	34	Derivatives of Trigonometric functions	14	Find the derivative of $\sec ^{2} x$.	2018-19 (Short)
4	31	Differentiability	16	Discuss the differentiability of $f(x)=x^{2}$ at $x=1$.	2019-20 (Short)
4	29	Introduction, Definition of limit	17	Evaluate: $\lim _{x \rightarrow 0} \frac{3 x^{2}-2 x+1}{x-1}$	$\begin{gathered} 2019-20 \\ \text { (Short) } \end{gathered}$
4	29	limit	20	What is the value of $\lim _{x \rightarrow-1}\left[1+x+x^{2}+\cdots \ldots \ldots+x^{10}\right]$.	2011-12 (Short)
4	32	Differentiation	21	Find the differential coefficient of $\sin x \cos x$	2012-13 (Short)
4	34	Derivatives of polynomial	22	Compute $\frac{d y}{d x}$ where $y=\sin x+\tan \left(x^{2}\right)+x^{4}$	$\begin{gathered} \text { 2012-13 } \\ \text { (Long) } \end{gathered}$
4	34	Derivatives of polynomial	23	Find the derivative of $y=9 x^{2}+\frac{3}{x}+5 \tan ^{-1} x$ with respect of x	2013-14 (Short)
4	29	Introduction, Definition of limit	24	Evaluate: $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 2 x}$	2012-13 (Short)
4	29	Introduction, Definition of limit	25	Find the value of: $\lim _{x \rightarrow 2}\left[\frac{x^{3}-4 x^{2}+4 x}{x^{2}-4}\right]$	$\begin{gathered} \text { 2012-13 } \\ \text { (Long) } \end{gathered}$
4	29	Introduction, Definition of limit	26	Show that: $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e$	$\begin{gathered} \text { 2012-13 } \\ \text { (Long) } \end{gathered}$
4	34	Derivatives of polynomial, parametric forms	27	Find $\frac{d y}{d x}$ if $y=\sin (\sqrt{\sin x+\cos x})$	2013-14 (Long)

4	29	Introduction, Definition of limit	28	Evaluate: $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$	$\begin{gathered} \text { 2013-14 } \\ \text { (Long) } \end{gathered}$
4	29	Introduction, Definition of limit	29	Evaluate: $\lim _{x \rightarrow 0}\left(\frac{3^{x}-2^{x}}{x}\right)$	$\begin{gathered} \text { 2013-14 } \\ \text { (Long) } \end{gathered}$
4	32	Derivative of sum and Product functions	30	If $y=\frac{1}{\tan x}-\frac{1}{\cot x}$, then find $\frac{d y}{d x}$	2014-15 (Short)
4	32	Derivative of sum and Product functions	31	Find the derivative $y=\frac{1}{\tan x}+\frac{1}{\cot x}$	2015-16 (Short)
4	29	Introduction, Definition of limit	32	Evaluate: $\lim _{x \rightarrow 0}\left(\frac{e^{x}+e^{-x}-2}{x^{2}}\right)$	2014-15 (Long)
4	29	Introduction, Definition of limit	33	Evaluate: $\lim _{\theta \rightarrow \frac{\pi}{2}}\left(\frac{1-\cos 4 \theta}{\sin 2 \theta}\right)$.	2014-15 (Short)
4	30	Continuity	34	Test the existence of function $f(x)=\|x\|$ at $x=0$.	2014-15 (Short)
4	29	Introduction, Definition of limit	35	Evaluate: $\lim _{x \rightarrow 2}\left(\frac{x^{5}-32}{x^{3}-8}\right)$	$\begin{gathered} \text { 2015-16 } \\ \text { (Long) } \end{gathered}$
4	37	Derivatives of Parametric forms	36	If $y=\sin ^{-1}(m \sin x)$, find $\frac{d y}{d x}$.	
4	32	Derivative of sum and Product functions	37	Find $\frac{d y}{d x}$ if $y=x \log x$	2020-21 (Short)
4	38	Derivatives of polynomial	38	Differentiate x^{2} with respect to x^{3}.	$\begin{gathered} \text { 2020-21 } \\ \text { (Long) } \end{gathered}$
4	34	Derivatives of polynomial, parametric forms	39	If $y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\cdots \ldots \ldots \infty}}}$, find $\frac{d y}{d x}$	$\begin{gathered} \text { 2020-21 } \\ \text { (Long) } \end{gathered}$
5	37	Derivatives of Parametric form	40	Differentiate $(\cos x)^{x}$ with respect to x.	$\begin{gathered} \text { 2019-20 } \\ \text { (Long) } \end{gathered}$
5	37	Derivatives of Parametric forms	41	Find $\frac{d y}{d x}$ if $y=(\log x)^{\cos x}+x^{\sin x}$	2018-19 (Long)

CO-Wise AKTU Question Bank

CO No.	Lect. No.	Syllabus Topic (As Per LP)	Ques. No.	Question Statement (As Per AKTU)	Session
5	39	Applications of Derivatives as rate change	1	Find the rate of change of area of a Circle with respect to its Circumference at radius 3 Cm	2022-23
5	42	Approximations \& Errors and Simple problems (that illustrate basic principles)	2	Find the approximate value of $(1.0002)^{3000}$ Using Differentiation.	2022-23
5	38	Lagrange's Mean Value Theorem	3	Find the area bounded by the Coordinate axis and normal to the curve $y=\log _{e} x$ at the point $P(1,0)$	2022-23
5	38	Lagrange's Mean Value Theorem (without proof) and its geometric interpretations	4	Verify Lagrange's mean value theorem if $f(x)=x(x-1)(x-2)$ in the interval $[0,1 / 2]$.	2022-23
5	43	Maxima and minima of one variable.	5	Let $p(x)$ be a real polynomial of least degree which has a local maximum at $x=1$ and a local minimum at $x=3$.If $p(1)=6$, $p(3)=2$, then find the value of $\frac{d p}{d x}$ at $\mathrm{x}=0$	2022-23
5	37	Rolle's Theorem (without proof) and its geometric interpretations	6	State Rolls Theorem	2021-22
5	43	Maxima and minima of one variable.	7	Find maximum \&minimum value of $y=x^{3}-3 x^{2}+3$	2021-22
5	38	Lagrange's Mean Value Theorem	8	Verify mean value theorem if $y=x^{2}+2 x+3$ in the interval [4,6].	2021-22
5	38	Lagrange's Mean Value Theorem	9	Find the equation of tangent and normal to the curve $y=x^{2}+2$ at the point $P(1,3)$	2021-22
5	38	Lagrange's Mean Value Theorem	10	Write the statement of Lagrange's Mean Value Theorems.	$\begin{aligned} & \hline 2012-13 \\ & 2015-16 \\ & 2019-20 \\ & \hline \end{aligned}$

					2020-21 (Short)
5	38	Lagrange's Mean Value Theorem	11	Verify LMVT for the function $f(x)=x^{3}-18 x^{2}+99 x-162$ on $[3,5]$.	
5	38	Lagrange's Mean Value Theorem	12	Find the equation of normal to the curve $y=x+\sin x \cos x$ at $x=\pi / 2$	2019-20 (Short)
5	42	Approximations \& Errors and Simple problems (that illustrate basic principles)	13	If $y=x^{4}-10$ and if x changes from 2 to 1.99 , what is approximate change in y.	$\begin{gathered} \text { 2019-20 } \\ \text { (Long) } \end{gathered}$
5	41	Tangents \& Normals to the given curve	14	Find the equation of tangent intercepts of a line on x axis and y axis respectively.	2020-21 (Short)
5	41	Tangents \& Normals to the given curve	15	Find the equation of the tangent to the curve $y=-5 x^{2}+6 x+7$ at the point $\left(\frac{1}{2}, \frac{35}{4}\right)$.	$\begin{gathered} \text { 2020-21 } \\ \text { (Long) } \end{gathered}$
5	43	Maxima and minima of one variable.	16	Find the maximum and minimum values of function $f(x)=\sin 3 x+4 \forall x \in(-\pi / 2, \pi / 2)$.	$\begin{gathered} 2019-20 \\ 2020-21 \\ \text { (Long) } \end{gathered}$
5	38	Lagrange's Mean Value Theorem	17	Verify mean value theorem if $f(x)=3 x^{2}-4 x-3$ in the interval $[1,4]$.	$\begin{gathered} \text { 2018-19 } \\ \text { (Long) } \end{gathered}$
5	41	Tangents \& Normals to the given curve	18	Find the slope of the tangent to the curve $y=3 x^{4}-4$ at $x=4$.	2018-19 (Short)
5	41	Tangents \& Normals to the given curve	19	Find the equation of all lines having slope 2 and tangent to the curve: $y+\frac{2}{x-3}=0$.	$\begin{gathered} \text { 2018-19 } \\ \text { (Long) } \end{gathered}$
5	37	Rolle's Theorem (without proof) and its geometric interpretations	20	Is Rolle's Theorem applicable to the function $f(x)=(x-1)(x-4) e^{-x}, x \in[0,4]$	2011-12 (Short)
5	38	Lagrange's Mean Value Theorem	21	Write the statement of Lagrange's Mean Value Theorems.)

5	42	Approximations \& Errors and Simple problems (that illustrate basic principles)	22	Find the approximate value of $f(3.02)$ Where $f(x)=3 x^{2}+5 x+3$	2014-15 (Long)
5	41	Tangents \& Normals to the given curve	23	Find the slope of the tangent to the curve $y=x^{3}-x$ at $x=2$	2011-12 (Long)
5	41	Tangents \& Normals to the given curve	24	Find the equation of the tangent to the curve $y=\frac{x-7}{(x-2)(x-3)}$ at the point where its cuts the x-axis	$\begin{gathered} \text { 2013-14 } \\ \text { (Long) } \end{gathered}$
5	42	Approximations \& Errors and Simple problems (that illustrate basic principles)	25	Find the approximate change in the volume V of a cube of side x meters caused by increasing the sides by 2%.	$\begin{gathered} \text { 2013-14 } \\ \text { (Long) } \end{gathered}$
5	41	Tangents \& Normals to the given curve	26	Find the slope of curve $y=3 x^{4}-4 x^{2}+6$ at (1,-1) and (-1,2)	2014-15 (Long)
5	41	Tangents \& Normals to the given curve	27	Find the point at which the tangent to the curve $y=\sqrt{4 x-3}-1$ has its slope $2 / 3$	2014-15 (Long)
5	43	Maxima and minima of one variable.	28	Show that semi-vertical angle of right circular cone of given surface area and maximum volume is $\sin ^{-1} \frac{1}{3}$	$\begin{gathered} \text { 2015-16 } \\ \text { (Long) } \end{gathered}$
5	43	Maxima and minima of one variable.	29	Find the critical points of $y=9 x^{2}+12 x+2$	2012-13 (Long)
5	43	Maxima and minima of one variable.	30	Find the Maxima and Minima for the function $f(x)=x+\sin 2 x$ in interval $0 \leq x \leq 2 \pi$	$\begin{gathered} \text { 2014-15 } \\ \text { (। } 10 \text { ond) } \end{gathered}$ (Long)

