

Meerut Institute of Engineering & Technology

Department of Computer Science & Engineering

DR. A.P.J KALAM TECHNICAL UNIVERSITY

LUCKNOW

LAB MANUAL

 B.TECH

COMPUTER SCIENCE AND ENGINEERING

SESSION – 2018-2019

Faculty Name:

𝐌𝐬.𝐀𝐧𝐮𝐫𝐚𝐝𝐡𝐚 𝐓𝐚𝐥𝐮𝐣𝐚 (𝐀𝐬𝐬𝐢𝐬𝐭𝐚𝐧𝐭 𝐏𝐫𝐨𝐟𝐞𝐬𝐬𝐨𝐫)

Ms Mariya Khurshid (Assistant Professor)
𝐌𝐬. 𝐏𝐫𝐚𝐠𝐲𝐚 𝐆𝐚𝐮𝐫 (𝐀𝐬𝐬𝐢𝐬𝐭𝐚𝐧𝐭 𝐏𝐫𝐨𝐟𝐞𝐬𝐬𝐨𝐫)

Lab Code: RCS-553

Lab: Principal of Programming Language

Index

 Time Table

 Lab course outcome

 List of programs

 List of vale added programs

 Programs

List of Lab Outcomes

LO1: To learn the basics of different types of programming.

LO2: To understand the syntax and building blocks of the Functional Programming Language.

LO3: To learn to solve a problem using the Meta Language (ML).

LO4: To compile and debug a Meta Language (ML) Program.

LO5: To sort the numbers by using different algorithm using ML.

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

List of Program

1. Simple LISP queries

2. LISP queries to print, control structures (if then else) and defining a function

3. PROLOG queries for understanding impact of Rule Order and Goal Order in PROLOG

Programming languages.

4. Write a Program to Swapping of two no’s with or without using third variable in Meta

Language.

5. Write a Program to implement Fibonacci Series in ML.

6. Write a Program to Sum of a digit. (e.g. digit=213, sum= 6)

7. Write a Program to find the Factorial of a number in ML

8. Write a Program to find Difference of squares. (if x > y return x
2
-y

2
, otherwise y

2
 – x

2
)

9. Program for linear search in Meta Languages (ML)

10. Program for Binary search in Meta Languages (ML)

11. Program for insertion sort in ML

12. Program for bubble sort in ML

13. Program for Merge sort in ML

14. Program for Quick sort in ML

Value Addition:

15. Program for Making Dictionary in ML

16. Program for understanding cuts in PROLOG Programming languages

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-1

Objective: Simple LISP queries.

 In this we have to write simple Lisp queries performing the simple operation like calculating

the fist, rest etc.

LISP programs are made up of three basic building blocks −

 atom

 list

 string

An atom is a number or string of contiguous characters. It includes numbers and special

characters.

A list is a sequence of atoms and/or other lists enclosed in parentheses.

A string is a group of characters enclosed in double quotation marks.

The list function is rather used for creating lists in LISP.

The list function can take any number of arguments and as it is a function, it evaluates its

arguments.

The first and rest functions give the first element and the rest part of a list

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

EXPERIMENT NO. 2

Objective: LISP queries to print, control structures (if then else), setf, let,

loop control structures and defining a function.

Our aim is to write LISP queries to print and queries based on the control structures like if, then

,else and also to define any function.

1. Print : Print is an Output function. All output functions in LISP take an optional argument

called output-stream, where the output is sent. If not mentioned or nil, output-stream

defaults to the value of the variable *standard-output*. The print function prints the

object with a preceding newline and followed by a space. It returns object.

2. PROG: PROG works like this: Before it begins it sets all the locals to NIL. The old

values of these locals are saved, and these are used only while Lisp is doing the PROG.

Thus, when the PROG is done, whatever old values were in the locals come back. PROG

begins with the first object. If it is an atom, then it simply ignores it. If the object is not an

atom then it evaluates it and if it can, goes on to the next object organization to the

program.

3. If then else: Control Structures are something that most programming languages provide

in order to help the programmer organize their thoughts and, thus, lend better. The if

construct has various forms. In simplest form it is followed by a test clause, a test action

and some other consequent action. If the test clause evaluates to true, then the test action

is executed otherwise, the consequent clause is evaluated.

4. Setf: setf returns the value of the last form

5. Let: When let is executed, each variable is assigned the respective value and lastly the s-

expression is evaluated. The value of the last expression evaluated is returned. If you

don't include an initial value for a variable, it is assigned to nil.

6. Dotimes: The dotimes construct allows looping for some fixed number of iterations.

7. Functions: The macro named defun is used for defining functions. The defun macro

needs three arguments −

 Name of the function

 Parameters of the function

 Body of the function

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-3

Objective: Program for understanding impact of Rule Order and Goal Order in

PROLOG Programming languages.

Procedure:

Rule: A rule can be viewed as an extension of a fact with added conditions that also have to be

satisfied for it to be true. It consists of two parts. The first part is similar to a fact (a predicate

with arguments). The second part consists of other clauses (facts or rules that are separated by

commas) which must all be true for the rule itself to be true. These two parts are separated by ":-

". You may interpret this operator as "if" in English.

Goals

A goal is a statement starting with a predicate and probably followed by its arguments. In a valid

goal, the predicate must have appeared in at least one fact or rule in the consulted program, and

the number of arguments in the goal must be the same as that appears in the consulted program.

Also, all the arguments (if any) are constants.

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-4

Objective:

Write a Program to Swapping of two no’s with or without using third variable in

Meta Language.

Procedure 1:

Given two variables, x and y, swap two variables with using a third variable.

𝑥 = 5
𝑦 = 7
𝑡 = 𝑥
𝑥 = 𝑦
𝑦 = 𝑡

Output:

𝑥 = 7
𝑦 = 5

Procedure 2:

Given two variables, x and y, swap two variables without using a third variable.

𝑥 = 5
𝑦 = 7
𝑥 = 𝑥 + 𝑦
𝑦 = 𝑥 − 𝑦
𝑥 = 𝑥 − 𝑦

Output:

𝑥 = 7
𝑦 = 5

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-5

Objective:

Write a Program to implement Fibonacci Series in ML.

Procedure:

The Fibonacci numbers are the numbers in the following integer sequence.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144…………..

In case of Fibonacci series, next number is the sum of previous two numbers

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

Step 1: Start

Step 2: Declare variable 𝑎, 𝑏, 𝑐, 𝑛, 𝑖
Step 3: Initialize variable 𝑎 = 1, 𝑏 = 1, 𝑖 = 2

Step 4: Read n from user

Step 5: Print a and b

Step 6: Repeat until 𝑖 < 𝑛

 6.1 𝑐 = 𝑎 + 𝑏
 6.2 𝑝𝑟𝑖𝑛𝑡 𝑐
 6.3 𝑎 = 𝑏, 𝑏 = 𝑐
 6.4 𝑖 = 𝑖 + 1
Stop 7: Stop

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-6

Objective:

Write a Program to Sum of a digit. (E.g. digit=213, sum= 6)in ML.

Procedure:

1. Take the integer as input.

2. Divide the input integer by 10; obtain its remainder and quotient.

3. Increment the new variable with the remainder got at step 2.

4. Repeat the step 2 & 3 with the quotient obtained until the quotient becomes zero.

5. Print the output and exit.

Algorithm:

Step 1: Input N

Step 2: Sum = 0

Step 3: While (N! = 0)

 Rem = N % 10;

 Sum = Sum + Rem;

N = N / 10;

Step 4: Print Sum

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-7

Objective:

Write a Program to find the Factorial of a number in ML

Procedure

Step 1: Declare n and Factorial as integer variable.

Step 2: Initialize Factorial = 1.

Step 2: Enter the value of N.

Step 3: Check whether N>0, if not then Factorial = 1.

Step 4: If yes then, Factorial = Factorial * N

Step 5: Decrease the value of N by 1 .

Step 6: Repeatstep 4and 5until N=0.

Step 7: Now print the value of F.

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-8

Objective:

Write a Program to find Difference of squares. (if x > y return x
2
-y

2
, otherwise y

2
 –

x
2
).

Procedure

Step 1: Takevariable x,y as an input

Step 2: By taking function name as fun diffs

Step 3: If x>y then x*x-y*y

Step 4: else y*y – x*x

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-9

Objective: Program for linear search in Meta Languages (ML)

Procedure

Step 1: Take an input variable x

Step 2: Take an input list z

Step 3: By taking function name as fun search

Step 4: if x= head of the list

Step 5 : Then display print x is print

Step 6: Else search tale of the list

Step 7: Print the result

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-10

Objective: Program for Binary search in Meta Languages (ML)

Binary Search Algorithm

Binary Search is applied on the sorted array or list of large size. It's time complexity of O(log

n) makes it very fast as compared to other sorting algorithms. The only limitation is that the array

or list of elements must be sorted for the binary search algorithm to work on it.

Implementing Binary Search Algorithm

Following are the steps of implementation that we will be following for Binary search algorithm:

1. Start with the middle element:

o If the target value is equal to the middle element of the array, then return the index of the

middle element.

o If not, then compare the middle element with the target value,

 If the target value is greater than the number in the middle index, then pick the

elements to the right of the middle index, and start with Step 1.

 If the target value is less than the number in the middle index, then pick the elements

to the left of the middle index, and start with Step 1.

2. When a match is found, return the index of the element matched.

3. If no match is found, then return -1

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-11

Objective: Program for insertion sort in ML

Insertion Sort Algorithm

Consider you have 10 cards out of a deck of cards in your hand and they are sorted, or arranged

in the ascending order of their numbers.

If I give you another card, and ask you to insert the card in just the right position, so that the

cards in your hand are still sorted. What will you do?

Well, you will have to go through each card from the starting or the back and find the right

position for the new card, comparing its value with each card. Once you find the right position,

you will insert the card there.

Similarly, if cards that are more new are provided to you, you can easily repeat the same process,

insert the new cards, and keep the cards sorted too.

This is exactly how insertion sort works. It starts from the index 1(not 0), and each index

starting from index 1 is like a new card, that you have to place at the right position in the sorted

sub array on the left.

Implementing Insertion Sort Algorithm

Following are the steps involved in insertion sort:

1. We start by making the second element of the given array, i.e. element at index 1, the key.

The key element here is the new card that we need to add to our existing sorted set of

cards(remember the example with cards above).

2. We compare the key element with the element(s) before it, in this case, element at index 0:

o If the key element is less than the first element, we insert the key element before the first

element.

o If the key element is greater than the first element, then we insert it after the first element.

3. Then, we make the third element of the array as key and will compare it with elements to its

left and insert it at the right position.

4. And, we go on repeating this, until the array is sorted.

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-12

Objective: Program for bubble sort in ML

Bubble Sort Algorithm

Bubble Sort is a simple algorithm, which is used to sort a given set of n elements provided in

form of an array with n number of elements. Bubble Sort compares all element one by one and

sort them based on their values.

If the given array has to be sorted in ascending order, then bubble sort will start by comparing

the first element of the array with the second element, if the first element is greater than the

second element, it will swap both the elements, and then move on to compare the second and the

third element, and so on.

If we have total n elements, then we need to repeat this process for n-1 times.

It is known as bubble sort, because with every complete iteration the largest element in the

given array, bubbles up towards the last place or the highest index, just like a water bubble rises

up to the water surface.

Sorting takes place by stepping through all the elements one-by-one and comparing it with the

adjacent element and swapping them if required.

Implementing Bubble Sort Algorithm

Following are the steps involved in bubble sort (for sorting a given array in ascending order):

1. Starting with the first element (index = 0), compare the current element with the next

element of the array.

2. If the current element is greater than the next element of the array, swap them.

3. If the current element is less than the next element, move to the next element. Repeat Step 1.

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-13

Objective: Program for Merge sort in ML

Merge Sort: Merge sort is a sorting technique based on divide and conquer technique. With

worst-case time complexity being Ο(n log n), it is one of the most respected algorithms. Merge

sort first divides the array into equal halves and then combines them in a sorted manner.

How Merge Sort Works?

To understand merge sort, we take an unsorted array as the following −

We know that merge sort first divides the whole array iteratively into equal halves unless the

atomic values are achieved. We see that an array of 8 items is divided into two arrays of size 4.

This does not change the sequence of appearance of items in the original. Now we divide these

two arrays into halves.

We further divide these arrays and we achieve atomic value which can no more be divided.

Now, we combine them in exactly the same manner as they were broken down. Please note the

color codes given to these lists.

We first compare the element for each list and then combine them into another list in a sorted

manner. We see that 14 and 33 are in sorted positions. We compare 27 and 10 and in the target

list of 2 values we put 10 first, followed by 27. We change the order of 19 and 35 whereas 42

and 44 are placed sequentially.

In the next iteration of the combining phase, we compare lists of two data values, and merge

them into a list of found data values placing all in a sorted order.

After the final merging, the list should look like this −

Now we should learn some programming aspects of merge sorting.

Algorithm

Merge sort keeps on dividing the list into equal halves until it can no more be divided. By

definition, if it is only one element in the list, it is sorted. Then, merge sort combines the smaller

sorted lists keeping the new list sorted too.

Step 1 − if it is only one element in the list it is already sorted, return.

Step 2 − divide the list recursively into two halves until it can no more be divided.

Step 3 − merge the smaller lists into new list in sorted order.

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-14

Objective: Program for Quick sort in ML

Quick Sort

Quick sort is a highly efficient sorting algorithm and is based on partitioning of array of data into

smaller arrays. A large array is partitioned into two arrays one of which holds values smaller

than the specified value, say pivot, based on which the partition is made and another array holds

values greater than the pivot value.

Quick sort partitions an array and then calls itself recursively twice to sort the two resulting

subarrays. This algorithm is quite efficient for large-sized data sets as its average and worst case

complexity are of Ο(n
2
), where n is the number of items.

Partition in Quick Sort

Following representation explains how to find the pivot value in an unsorted array.

The pivot value divides the list into two parts. And recursively, we find the pivot for each sub-

lists until all lists contains only one element.

Quick Sort Pivot Algorithm

Based on our understanding of partitioning in quick sort, we will now try to write an algorithm

for it, which is as follows.

Step 1 − Choose the highest index value has pivot

Step 2 − Take two variables to point left and right of the list excluding pivot

Step 3 − left points to the low index

Step 4 − right points to the high

Step 5 − while value at left is less than pivot move right

Step 6 − while value at right is greater than pivot move left

Step 7 − if both step 5 and step 6 does not match swap left and right

Step 8 − if left ≥ right, the point where they met is new pivot

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-15

Objective: Program for Making Dictionary in ML

A dictionary, sometimes known as a wordbook, is a collection of words in one or more specific

languages, often arranged alphabetically which might include information on definitions, usage,

etymologies, pronunciations, translation, etc. or a book of words in one language with their

equivalents in another, sometimes known as a lexicon. A lexicographical reference shows inter-

relationships among the data.

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-16

Objective: Program for understanding cuts in PROLOG Programming languages.

Cut: The cut, in Prolog, is a goal, written as,!, which always succeeds, but cannot

be backtracked past. It is used to prevent unwanted backtracking, for example, to prevent extra

solutions being found by prolog. The cut should be used sparingly. There is a temptation to insert

cuts experimentally into code that is not working correctly. If you do this, bear in mind that when

debugging is complete, you should understand the effect of, and be able to explain the need for,

every cut you use. The use of a cut should thus be commented.

http://www.cse.unsw.edu.au/~billw/dictionaries/prolog/goal.html
http://www.cse.unsw.edu.au/~billw/dictionaries/prolog/cut.html#backtrack
http://www.cse.unsw.edu.au/~billw/dictionaries/prolog/comment.html

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-1

Objective: Simple LISP queries.

 (a) Evaluate the following forms:

(first ‘ (p h w))

(rest ‘ (b k p h))

(first ‘((a b) (c d)))

(rest ‘ ((a b) (c d)))

(first (rest ‘((a b) (c d))))

(rest (first ‘((a b) (c d))))

(rest (first (rest ‘((a b) (c d)))))

(first (rest (first ‘((a b) (c d)))))

 OUTPUT

CL-USER 6 > (first ‘(p h w))

P

CL-USER 7 > (rest ‘(b k p h))

(K P H)

CL-USER 8 > (first ‘((a b) (c d)))

(A B)

CL-USER 9 > (rest ‘((a b) (c d)))

((C D))

CL-USER 10 > (first (rest ‘((a b) (c d))))

(C D)

(B)

CL-USER 12 > (rest (first (rest ‘((a b) (c d)))))

(D)

CL-USER 13 > (first (rest (first ‘((a b) (c d)))))

B

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

EXPERIMENT NO. 2

Objective: LISP queries to print, control structures (if then else) and defining a

function.

Description: Our aim is to write LISP queries to print , and queries based on the control structures like if,

then ,else and also to define any function.

 PRINT

1. (print (+ 2 3 4 5))

 OUTPUT

 14

 14

2. (+ (print (* 2 3)) (print (/ 3 2))9)

 OUTPUT

 6

 3/2

 33/2

 PROGN

(if (> 3 2)

 (progn (print "hello") (print "yo")

 (print "whassup?") 9)

 (+ 4 2 3))

 OUTPUT

 "hello"

 "yo"

 "whassup?"

 9

IF

1. (if (<= 3 2) (* 3 9) (+ 4 2 3))

 OUTPUT

 9

2. (if (> 2 3) 9)

 OUTPUT
 NIL

3. (if (= 2 2) (if (> 3 2) 4 6) 9)

 OUTPUT
 4

4. (+ 4 (if (= 2 2) (* 9 2) 7))

 OUTPUT
 22

 LISP queries of setf, let, loop control structures

 SETF

1. (setf x (* 3 2))

OUTPUT
 6

2. X

OUTPUT
 6

3. (setf y (+ x 3))

OUTPUT
 9

4. (* x y)

OUTPUT

 54

5. (setf sin 9)

OUTPUT
 9

6. (sin sin)

 OUTPUT
 0.4121185

 LET

1. (setf x 4)

 OUTPUT
 4

2. (let ((x 3))

 (print x)

 (setf x 9)

 (print x)

 (print "hello"))

 OUTPUT
 3

 9

 "hello"

 "hello"

3. (let ((x 3))

 (print x)

 (let (x)

 (print x)

 (let ((x "hello"))

 (print x))

 (print x))

 (print x)

 (print "yo"))

 OUTPUT
 3

 NIL

 "hello"

 NIL

 3

 "yo"

 "yo"

1. (setf x 3)

OUTPUT
 3

2. (dotimes (x 4 "yo") (print "hello"))

 OUTPUT
 "hello"

 "hello"

 "hello"

 "hello"

 "yo"

3. (setf bag 2)

 OUTPUT
 2

4. (dotimes (x 6) (setf bag (* bag bag)))

 OUTPUT
 NIL

5. bag

 OUTPUT
 18446744073709551616

 Function that computes the double, triple, square and cube of a number.

 DOUBLE

 (defun double (n) (*n 2))

 OUTPUT

 (DOUBLE 4)

 8

 (DOUBLE 7)

 14

TRIPLE

 (defun triple (n) (*n 2))

 OUTPUT:

 (TRIPLE 4)

 12

 (TRIPLE 7)

 21

 SQUARE

 (defun square (n) (* n n))

 OUTPUT

 (SQUARE 5)

 25

 CUBE

 (defun cube (n) (* n n n))

 OUTPUT

 (SQUARE 5)

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-3

Objective: Program for understanding impact of Rule Order and Goal Order in

PROLOG Programming languages.

Knowledge Base 1

 woman(mia).

 woman(jody).

 woman(yolanda).

 playsAirGuitar(jody).

 party.

?- woman(mia).

true

?- playsAirGuitar(jody)

true

?- playsAirGuitar(mia).

false

?- playsAirGuitar(vincent).

false

?- party

true

?- rockConcert.

false

Knowledge Base 2

Here is KB2, our second knowledge base:

 happy(yolanda).

 listens2Music(mia).

 listens2Music(yolanda):- happy(yolanda).

 playsAirGuitar(mia):- listens2Music(mia).

 playsAirGuitar(yolanda):- listens2Music(yolanda).

 ?- playsAirGuitar(mia).

true

?- playsAirGuitar(yolanda).

true

Knowledge Base 3

KB3, our third knowledge base, consists of five clauses:

 happy(vincent).

 listens2Music(butch).

 playsAirGuitar(vincent):-

 listens2Music(vincent),happy(vincent).

 playsAirGuitar(butch):-happy(butch).

 playsAirGuitar(butch):- listens2Music(butch).

?- playsAirGuitar(vincent).

false

?- playsAirGuitar(butch).

false

Knowledge Base 4

Here is KB4, our fourth knowledge base:

 woman(mia).

 woman(jody).

 woman(yolanda).

 likes (vincent,mia).

 likes(marsellus,mia).

 likes (pumpkin,honey_bunny).

 likes (honey_bunny,pumpkin).

?- woman(X).

mia

?- likes (marsellus,X), woman(X).

mia

Knowledge Base 5

 likes (vincent,mia).

 likes (marsellus,mia).

 likes (pumpkin,honey_bunny).

 likes (honey_bunny,pumpkin).

 jealous(X,Y):- likes (X,Z), likes (Y,Z).

?- jealous(marsellus,W).

Knowledge base implement family relationship.

male(sunny).

male(ashok).

male(sheetal).

male(sk).

female(saroj).

female(sadhana).

female(divya).

parent(sheetal,sunny).

parent(sheetal,ashok).

parent(sheetal,divya).

parenet(sadhana,sunny).

parent(sadhana,ashok).

parent(sadhana,divya).

parent(sk,sheetal).

father(X,Y) :- parent(X,Y), male(X).

mother(X,Y):-parent(X,Y),female(X).

grandfather(X,Y):- parent(X,Z),parent(Z,Y),male(X).

grandmother(X,Y):- parent(X,Z),parent(Z,Y),female(X).

sibling(X,Y) :- parent(Z,X), parent(Z,Y) ,X\=Y.

granddaughter(X,Y):- parent(Z,Y),parent(Y,X),female(X).

grandson(X,Y):-parent(Z,Y),parent(Y,X),male(X).

brother(X,Y):- parent(Z,X),parent(Z,Y),male(X), X\=Y.

sister(X,Y):-parent(Z,X),parent(Z,Y),female(X),X\=Y.

Output:

?-female(X).

X=saroj;

X=sadhana;

X=divya;

false.

?-father(X,sunny).

X=sheetal.

?-grandfather(X,sunny).

X=sk;

false

?-grandfather(X,Y).

X=sk, Y=sunny;

X=sk Y=divya;

X=sk Y=ashok;

false

?-sibling(X,sunny).

X=divya;

X=ashok;

X=divya;

X=ashok;

false

?-female(divya)

true

?-female(div).

false

?-parent(X,sunny).

X=sheetal;

X=sadhana.

?-parent(X,Y).

X=sheetal

Y=sunny;

X=sheetal

Y=divya;

X=sheetal

Y=ashok;

X=sadhana

Y=sunny;

X=sadhana

Y=divya;

X=sadhana

Y=ashok;

X=sk

Y=sheetal.

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-4

Objective:

Write a Program to Swapping of two no’s with or without using third variable in

Meta Language.

Program:

val x =5 : int;

val y = 7 : int;

val t=1 :int ;

val t=x;

val x=y;

val y=t;

Output:

Program No.-5

Objective:

Write a Program to implement Fibonacci Series in ML.

Program:

fun fibonacci n =

 if n < 3 then 1

 else

 fibonacci (n-1) + fibonacci (n-2)

fun aux n =

 if n > 16 then

 print "\n"

 else (

 print (Int.toString (fibonacci n) ^ ", ");

 aux (n + 1)

);

aux 1;

Output:

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.- 6

Objective:

Write a Program to Sum of a digit. (eg. digit=213, sum= 6) in ML.

Program:

fun sumDigits (n) =

 if n < 10 then n

 else

 n mod 10 + sumDigits(n div 10);

Output:

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-7

Objective:

Write a Program to find the Factorial of a number in ML

.

Program:

factorial n =

 if n <= 1 then

 1

 else

 factorial (n-1) * n;

fun aux n =

 if n > 16 then

 ()

 else (

 print (Int.toString n ^ "! = " ^ Int.toString (factorial n) ^ "\n");

 aux (n + 1)

);

aux 0;

Output:

Program No.-8

Objective:

Write a Program to find Difference of squares. (if x > y return x
2
-y

2
, otherwise y

2
 –

x
2
).

Program:

Fun diffs (x,y)=

 If x>y then

 x*x – y*y

 else

 y*y-x*x

Output:

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-9

Objective: Program for linear search in Meta Languages (ML)

Program:

𝑓𝑢𝑛 𝑠𝑒𝑎𝑟𝑐𝑕 𝑥: 𝑖𝑛𝑡, 𝑧 =

 𝑖𝑓 𝑥 = 𝑕𝑑 𝑧 𝑡𝑕𝑒𝑛
𝑝𝑟𝑖𝑛𝑡 x is present

𝑒𝑙𝑠𝑒 𝑠𝑒𝑎𝑟𝑐𝑕(𝑥, 𝑡𝑙(𝑧));

Output:

At terminal

𝑠𝑒𝑎𝑟𝑐𝑕(2, [1,2,3,4]);

𝑣𝑎𝑙 𝑠𝑒𝑎𝑟𝑐𝑕 = 𝑓𝑛 ∶ 𝑖𝑛𝑡 ∗ 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡 −> 𝑢𝑛𝑖𝑡

𝑥 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝑣𝑎𝑙 𝑖𝑡 = () ∶ 𝑢𝑛𝑖𝑡

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-10

Objective: Program for Binary search in Meta Languages (ML)

Program:

𝑜𝑝𝑒𝑛 𝐴𝑟𝑟𝑎𝑦;
𝑓𝑢𝑛 𝑏𝑖𝑛𝑠𝑒𝑎𝑟𝑐𝑕 (𝐴, 𝑥) =
 𝑙𝑒𝑡 𝑣𝑎𝑙 𝑛 = 𝑙𝑒𝑛𝑔𝑡𝑕 𝐴;
 𝑣𝑎𝑙 𝑙𝑜 = 𝑟𝑒𝑓 0 𝑎𝑛𝑑 𝑕𝑖 = 𝑟𝑒𝑓 𝑛;
 𝑣𝑎𝑙 𝑚𝑖𝑑 = 𝑟𝑒𝑓 ((! 𝑙𝑜 + ! 𝑕𝑖) 𝑑𝑖𝑣 2);
 𝑖𝑛
 𝑤𝑕𝑖𝑙𝑒 ((! 𝑕𝑖 − ! 𝑙𝑜 > 1) 𝑎𝑛𝑑𝑎𝑙𝑠𝑜 (𝑥 <> 𝑠𝑢𝑏 (𝐴, ! 𝑚𝑖𝑑))) 𝑑𝑜
 (
 𝑖𝑓 𝑥 < 𝑠𝑢𝑏 (𝐴, ! 𝑚𝑖𝑑) 𝑡𝑕𝑒𝑛 𝑕𝑖 ∶= ! 𝑚𝑖𝑑 − 1
 𝑒𝑙𝑠𝑒 𝑙𝑜 ∶= ! 𝑚𝑖𝑑 + 1;
 𝑚𝑖𝑑 ∶= (! 𝑙𝑜 + ! 𝑕𝑖) 𝑑𝑖𝑣 2
);
 𝑖𝑓 𝑥 = 𝑠𝑢𝑏 (𝐴, ! 𝑚𝑖𝑑) 𝑡𝑕𝑒𝑛 𝑆𝑂𝑀𝐸 (! 𝑚𝑖𝑑)
 𝑒𝑙𝑠𝑒 𝑁𝑂𝑁𝐸
 𝑒𝑛𝑑;
𝑜𝑝𝑒𝑛 𝐴𝑟𝑟𝑎𝑦;
𝑣𝑎𝑙 𝐴 = 𝑓𝑟𝑜𝑚𝐿𝑖𝑠𝑡 [~24, ~24, ~12, ~12, 0, 0, 1, 20, 45, 123];
𝑏𝑖𝑛𝑠𝑒𝑎𝑟𝑐𝑕 (𝐴, 0);
𝑏𝑖𝑛𝑠𝑒𝑎𝑟𝑐𝑕 (𝐴, ~24);
𝑏𝑖𝑛𝑠𝑒𝑎𝑟𝑐𝑕 (𝐴, 123);
𝑏𝑖𝑛𝑠𝑒𝑎𝑟𝑐𝑕 (𝐴, 100);
𝑏𝑖𝑛𝑠𝑒𝑎𝑟𝑐𝑕 (𝐴, ~25);
𝑏𝑖𝑛𝑠𝑒𝑎𝑟𝑐𝑕 (𝐴, 124);

Output:

At terminal

𝑣𝑎𝑙 𝑖𝑡 = 𝑆𝑂𝑀𝐸 5 ∶ 𝑖𝑛𝑡 𝑜𝑝𝑡𝑖𝑜𝑛

𝑣𝑎𝑙 𝑖𝑡 = 𝑆𝑂𝑀𝐸 0 ∶ 𝑖𝑛𝑡 𝑜𝑝𝑡𝑖𝑜𝑛

𝑣𝑎𝑙 𝑖𝑡 = 𝑆𝑂𝑀𝐸 9 ∶ 𝑖𝑛𝑡 𝑜𝑝𝑡𝑖𝑜𝑛

𝑣𝑎𝑙 𝑖𝑡 = 𝑁𝑂𝑁𝐸 ∶ 𝑖𝑛𝑡 𝑜𝑝𝑡𝑖𝑜𝑛

𝑣𝑎𝑙 𝑖𝑡 = 𝑁𝑂𝑁𝐸 ∶ 𝑖𝑛𝑡 𝑜𝑝𝑡𝑖𝑜𝑛

𝑣𝑎𝑙 𝑖𝑡 = 𝑁𝑂𝑁𝐸 ∶ 𝑖𝑛𝑡 𝑜𝑝𝑡𝑖𝑜𝑛

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-11

Objective: Program for insertion sort in ML

Program:

𝑓𝑢𝑛 𝑖𝑛𝑠𝑒𝑟𝑡 𝑥 [] = [𝑥]
 | 𝑖𝑛𝑠𝑒𝑟𝑡 𝑥 (𝑦: : 𝑦𝑠) =
 𝑖𝑓 𝑥 < 𝑦
 𝑡𝑕𝑒𝑛 𝑥 ∶ : 𝑦 ∶ : 𝑦𝑠
 𝑒𝑙𝑠𝑒 𝑦 ∶ : (𝑖𝑛𝑠𝑒𝑟𝑡 𝑥 𝑦𝑠)

𝑓𝑢𝑛 𝑖𝑠𝑜𝑟𝑡 [] = []
 | 𝑖𝑠𝑜𝑟𝑡 (𝑥: : 𝑥𝑠) =
 𝑖𝑛𝑠𝑒𝑟𝑡 𝑥 (𝑖𝑠𝑜𝑟𝑡 𝑥𝑠)

Output:

At terminal

𝑖𝑠𝑜𝑟𝑡 [6, 2, 4, 3]; {𝐼𝑛𝑝𝑢𝑡}

𝑉𝑎𝑙 𝑖𝑡 = [2, 3, 4, 6] ∶ 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-12

Objective: Program for bubble sort in ML

Program:

𝑓𝑢𝑛 𝑖𝑠𝑠𝑜𝑟𝑡𝑒𝑑 [] = 𝑡𝑟𝑢𝑒 |

 𝑖𝑠𝑠𝑜𝑟𝑡𝑒𝑑 [𝑥] = 𝑡𝑟𝑢𝑒 |

 𝑖𝑠𝑠𝑜𝑟𝑡𝑒𝑑 (𝑥: : 𝑦: : 𝑡) = 𝑥 <= 𝑦 𝑎𝑛𝑑𝑎𝑙𝑠𝑜 𝑖𝑠𝑠𝑜𝑟𝑡𝑒𝑑(𝑦: : 𝑡);

(∗ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑕𝑎𝑡 𝑑𝑜𝑒𝑠 𝑡𝑕𝑒 𝑏𝑢𝑏𝑏𝑙𝑖𝑛𝑔 ∗)

𝑓𝑢𝑛 𝑏𝑢𝑏𝑏𝑙𝑒 [] = [] |

 𝑏𝑢𝑏𝑏𝑙𝑒 [𝑥] = [𝑥] |

 𝑏𝑢𝑏𝑏𝑙𝑒 (𝑥: : 𝑦: : 𝑡) = 𝑖𝑓 (𝑥 > 𝑦) 𝑡𝑕𝑒𝑛 𝑦: : (𝑏𝑢𝑏𝑏𝑙𝑒 (𝑥: : 𝑡))

 𝑒𝑙𝑠𝑒 𝑥: : (𝑏𝑢𝑏𝑏𝑙𝑒 (𝑦: : 𝑡));

(∗ 𝐶𝑎𝑙𝑙 𝑏𝑢𝑏𝑏𝑙𝑒 𝑜𝑛 𝑙𝑖𝑠𝑡 𝑢𝑛𝑡𝑖𝑙 𝑖𝑡 𝑖𝑠 𝑠𝑜𝑟𝑡𝑒𝑑 ∗)

𝑓𝑢𝑛 𝑏𝑢𝑏𝑏𝑙𝑒𝑆𝑜𝑟𝑡 [] = [] |

 𝑏𝑢𝑏𝑏𝑙𝑒𝑆𝑜𝑟𝑡 𝑙 = 𝑖𝑓 (𝑖𝑠𝑠𝑜𝑟𝑡𝑒𝑑 𝑙) 𝑡𝑕𝑒𝑛 𝑙 𝑒𝑙𝑠𝑒 𝑏𝑢𝑏𝑏𝑙𝑒𝑆𝑜𝑟𝑡 (𝑏𝑢𝑏𝑏𝑙𝑒 𝑙);

Output:

At terminal

𝑏𝑢𝑏𝑏𝑙𝑒𝑠𝑜𝑟𝑡 [6, 2, 4, 3]; {𝐼𝑛𝑝𝑢𝑡}

𝑉𝑎𝑙 𝑖𝑡 = [2, 3, 4, 6] ∶ 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-13

Objective: Program for Merge sort in ML

Program:

𝑓𝑢𝑛 𝑚𝑒𝑟𝑔𝑒 [] 𝑀 = 𝑀
| 𝑚𝑒𝑟𝑔𝑒 𝐿 [] = 𝐿
| 𝑚𝑒𝑟𝑔𝑒 (𝐿 𝑎𝑠 𝑥: : 𝑥𝑠) (𝑀 𝑎𝑠 𝑦: : 𝑦𝑠) = 𝑖𝑓 𝑥 < 𝑦 𝑡𝑕𝑒𝑛 𝑥 ∶ : (𝑚𝑒𝑟𝑔𝑒 𝑥𝑠 𝑀)

 𝑒𝑙𝑠𝑒 𝑦 ∶ : (𝑚𝑒𝑟𝑔𝑒 𝐿 𝑦𝑠);

𝑓𝑢𝑛 𝑠𝑝𝑙𝑖𝑡 𝐿 =
𝑙𝑒𝑡

 𝑣𝑎𝑙 𝑡 = (𝑙𝑒𝑛𝑔𝑡𝑕 𝐿) 𝑑𝑖𝑣 2
𝑖𝑛
 (𝐿𝑖𝑠𝑡. 𝑡𝑎𝑘𝑒 (𝐿, 𝑡) , 𝐿𝑖𝑠𝑡. 𝑑𝑟𝑜𝑝 (𝐿, 𝑡))
𝑒𝑛𝑑;

𝑓𝑢𝑛 𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡 [] = []
 | 𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡 [𝑥] = [𝑥]
 | 𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡 𝑥𝑠 =
 𝑙𝑒𝑡

𝑣𝑎𝑙 (𝑦𝑠, 𝑧𝑠) = 𝑠𝑝𝑙𝑖𝑡 𝑥𝑠
 𝑖𝑛
 𝑚𝑒𝑟𝑔𝑒 (𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡 𝑦𝑠) (𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡 𝑧𝑠)
 𝑒𝑛𝑑;

Output:

At terminal

𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡 [6, 2, 4, 3]; {𝐼𝑛𝑝𝑢𝑡}

𝑉𝑎𝑙 𝑖𝑡 = [2, 3, 4, 6] ∶ 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-14

Objective: Program for Quick sort in ML

Program:

𝑓𝑢𝑛 𝑄𝑢𝑖𝑐𝑘𝑠𝑜𝑟𝑡 [] = []
 | 𝑄𝑢𝑖𝑐𝑘𝑠𝑜𝑟𝑡 (𝑥: : 𝑥𝑠) =
 𝑙𝑒𝑡
 𝑣𝑎𝑙 (𝑆, 𝐵) = 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑥, 𝑥𝑠)
 𝑖𝑛
 (𝑄𝑢𝑖𝑐𝑘𝑠𝑜𝑟𝑡 𝑆) @ (𝑥 ∶ : (𝑄𝑢𝑖𝑐𝑘𝑠𝑜𝑟𝑡 𝐵))
 𝑒𝑛𝑑

𝑓𝑢𝑛 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑝, []) = ([], [])
 | 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑝, 𝑥: : 𝑥𝑠) =
 𝑙𝑒𝑡
 𝑣𝑎𝑙 (𝑆, 𝐵) = 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑝, 𝑥𝑠)
 𝑖𝑛
 𝑖𝑓 𝑥 < 𝑝 𝑡𝑕𝑒𝑛 (𝑥: : 𝑆, 𝐵)
 𝑒𝑙𝑠𝑒 (𝑆, 𝑥: : 𝐵)

𝑒𝑛𝑑

Output:

At terminal

𝑄𝑢𝑖𝑐𝑘𝑠𝑜𝑟𝑡 [6, 2, 4, 3]; {𝐼𝑛𝑝𝑢𝑡}

𝑉𝑎𝑙 𝑖𝑡 = [2, 3, 4, 6] ∶ 𝑖𝑛𝑡 𝑙𝑖𝑠𝑡

MEERUT INSTITUTE OF ENGINEERING & TECHNOLOGY, MEERUT
N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing, Meerut-250005

Program No.-15

Objective: Program for Making Dictionary in ML

Program:

𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑂𝑅𝐷𝐸𝑅𝐸𝐷 =
𝑠𝑖𝑔
 𝑡𝑦𝑝𝑒 𝑡
 𝑣𝑎𝑙 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 ∶ 𝑡 ∗ 𝑡 −> 𝑜𝑟𝑑𝑒𝑟 (∗ 𝐿𝐸𝑆𝑆, 𝐸𝑄𝑈𝐴𝐿, 𝑜𝑟 𝐺𝑅𝐸𝐴𝑇𝐸𝑅 ∗)
𝑒𝑛𝑑

𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝐷𝐼𝐶𝑇𝐼𝑂𝑁𝐴𝑅𝑌 =
𝑠𝑖𝑔
 𝑡𝑦𝑝𝑒 𝑘𝑒𝑦
 𝑡𝑦𝑝𝑒 ′𝑣 𝑑𝑖𝑐𝑡
 𝑣𝑎𝑙 𝑒𝑚𝑝𝑡𝑦 ∶ ′𝑣 𝑑𝑖𝑐𝑡
 𝑣𝑎𝑙 𝑖𝑛𝑠𝑒𝑟𝑡 ∶ ′𝑣 𝑑𝑖𝑐𝑡 −> 𝑘𝑒𝑦 ∗ ′𝑣 −> ′𝑣 𝑑𝑖𝑐𝑡
 𝑣𝑎𝑙 𝑙𝑜𝑜𝑘𝑢𝑝 ∶ ′𝑣 𝑑𝑖𝑐𝑡 −> 𝑘𝑒𝑦 −> ′𝑣 𝑜𝑝𝑡𝑖𝑜𝑛
 𝑣𝑎𝑙 𝑟𝑒𝑚𝑜𝑣𝑒 ∶ ′𝑣 𝑑𝑖𝑐𝑡 −> 𝑘𝑒𝑦 −> ′𝑣 𝑑𝑖𝑐𝑡 𝑜𝑝𝑡𝑖𝑜𝑛
𝑒𝑛𝑑

𝑓𝑢𝑛𝑐𝑡𝑜𝑟 𝐿𝑖𝑠𝑡𝐷𝑖𝑐𝑡 (𝐾𝑒𝑦 ∶ 𝑂𝑅𝐷𝐸𝑅𝐸𝐷) ∶ 𝐷𝐼𝐶𝑇𝐼𝑂𝑁𝐴𝑅𝑌 =
𝑠𝑡𝑟𝑢𝑐𝑡
 𝑡𝑦𝑝𝑒 𝑘𝑒𝑦 = 𝐾𝑒𝑦. 𝑡
 𝑡𝑦𝑝𝑒 ′𝑣 𝑑𝑖𝑐𝑡 = (𝐾𝑒𝑦. 𝑡 ∗ ′𝑣) 𝑙𝑖𝑠𝑡
 𝑣𝑎𝑙 𝑒𝑚𝑝𝑡𝑦 = 𝑛𝑖𝑙

 𝑓𝑢𝑛 𝑖𝑛𝑠𝑒𝑟𝑡 𝐷 (𝑘, 𝑣) = (𝑘, 𝑣): : 𝐷

 𝑓𝑢𝑛 𝑙𝑜𝑜𝑘𝑢𝑝 𝑛𝑖𝑙 𝑘 = 𝑁𝑂𝑁𝐸
 | 𝑙𝑜𝑜𝑘𝑢𝑝 ((𝑘′, 𝑣): : 𝐷) 𝑘 =
 (𝑐𝑎𝑠𝑒 𝐾𝑒𝑦. 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (𝑘, 𝑘′) 𝑜𝑓 𝐸𝑄𝑈𝐴𝐿 => 𝑆𝑂𝑀𝐸 𝑣 | _ => 𝑙𝑜𝑜𝑘𝑢𝑝 𝐷 𝑘)

 𝑓𝑢𝑛 𝑟𝑒𝑚𝑜𝑣𝑒 𝑛𝑖𝑙 𝑘 = 𝑁𝑂𝑁𝐸
 | 𝑟𝑒𝑚𝑜𝑣𝑒 ((𝑘′, 𝑣): : 𝐷) 𝑘 =
 (𝑐𝑎𝑠𝑒 𝐾𝑒𝑦. 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (𝑘, 𝑘′) 𝑜𝑓
 𝐸𝑄𝑈𝐴𝐿 => (𝑐𝑎𝑠𝑒 𝑟𝑒𝑚𝑜𝑣𝑒 𝐷 𝑘 𝑜𝑓 𝑁𝑂𝑁𝐸 => 𝑆𝑂𝑀𝐸 𝐷 | 𝑆𝑂𝑀𝐸 𝐷′ => 𝑆𝑂𝑀𝐸 𝐷′)

 | _ => (𝑐𝑎𝑠𝑒 𝑟𝑒𝑚𝑜𝑣𝑒 𝐷 𝑘 𝑜𝑓 𝑁𝑂𝑁𝐸 => 𝑁𝑂𝑁𝐸 | 𝑆𝑂𝑀𝐸 𝐷′ => 𝑆𝑂𝑀𝐸 𝐷′))
𝑒𝑛𝑑

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐼𝑛𝑡𝑂𝑟𝑑𝑒𝑟𝑒𝑑 ∶ 𝑂𝑅𝐷𝐸𝑅𝐸𝐷 =
𝑠𝑡𝑟𝑢𝑐𝑡
 𝑡𝑦𝑝𝑒 𝑡 = 𝑖𝑛𝑡
 𝑣𝑎𝑙 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 = 𝐼𝑛𝑡. 𝑐𝑜𝑚𝑝𝑎𝑟𝑒
𝑒𝑛𝑑

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐼𝑛𝑡𝐿𝑖𝑠𝑡𝐷𝑖𝑐𝑡 = 𝐿𝑖𝑠𝑡𝐷𝑖𝑐𝑡(𝐼𝑛𝑡𝑂𝑟𝑑𝑒𝑟𝑒𝑑)

Program No.-15

Objective: Program for understanding cuts in PROLOG Programming languages.

Program:

𝑡𝑒𝑎𝑐𝑕𝑒𝑠(𝑑𝑟_𝑓𝑟𝑒𝑑, 𝑕𝑖𝑠𝑡𝑜𝑟𝑦).
𝑡𝑒𝑎𝑐𝑕𝑒𝑠(𝑑𝑟_𝑓𝑟𝑒𝑑, 𝑒𝑛𝑔𝑙𝑖𝑠𝑕).
𝑡𝑒𝑎𝑐𝑕𝑒𝑠(𝑑𝑟_𝑓𝑟𝑒𝑑, 𝑑𝑟𝑎𝑚𝑎).
𝑡𝑒𝑎𝑐𝑕𝑒𝑠(𝑑𝑟_𝑓𝑖𝑜𝑛𝑎, 𝑝𝑕𝑦𝑠𝑖𝑐 𝑠).

𝑠𝑡𝑢𝑑𝑖𝑒𝑠(𝑎𝑙𝑖𝑐𝑒, 𝑒𝑛𝑔𝑙𝑖𝑠𝑕).

𝑠𝑡𝑢𝑑𝑖𝑒𝑠(𝑎𝑛𝑔𝑢𝑠, 𝑒𝑛𝑔𝑙𝑖𝑠𝑕).

𝑠𝑡𝑢𝑑𝑖𝑒𝑠(𝑎𝑚𝑒𝑙𝑖𝑎, 𝑑𝑟𝑎𝑚𝑎).

𝑠𝑡𝑢𝑑𝑖𝑒𝑠(𝑎𝑙𝑒𝑥, 𝑝𝑕𝑦𝑠𝑖𝑐𝑠).

Output:

? − 𝑡𝑒𝑎𝑐𝑕𝑒𝑠(𝑑𝑟_𝑓𝑟𝑒𝑑, 𝐶𝑜𝑢𝑟𝑠𝑒), 𝑠𝑡𝑢𝑑𝑖𝑒𝑠(𝑆𝑡𝑢𝑑𝑒𝑛𝑡, 𝐶𝑜𝑢𝑟𝑠𝑒).

𝐶𝑜𝑢𝑟𝑠𝑒 = 𝑒𝑛𝑔𝑙𝑖𝑠𝑕

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑎𝑙𝑖𝑐𝑒 ;

𝐶𝑜𝑢𝑟𝑠𝑒 = 𝑒𝑛𝑔𝑙𝑖𝑠𝑕

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑎𝑛𝑔𝑢𝑠 ;

𝐶𝑜𝑢𝑟𝑠𝑒 = 𝑑𝑟𝑎𝑚𝑎

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑎𝑚𝑒𝑙𝑖𝑎 ;

𝑓𝑎𝑙𝑠𝑒.

? − 𝑡𝑒𝑎𝑐𝑕𝑒𝑠(𝑑𝑟_𝑓𝑟𝑒𝑑, 𝐶𝑜𝑢𝑟𝑠𝑒), !, 𝑠𝑡𝑢𝑑𝑖𝑒𝑠(𝑆𝑡𝑢𝑑𝑒𝑛𝑡, 𝐶𝑜𝑢𝑟𝑠𝑒).

𝑓𝑎𝑙𝑠𝑒.

? − 𝑡𝑒𝑎𝑐𝑕𝑒𝑠(𝑑𝑟_𝑓𝑟𝑒𝑑, 𝐶𝑜𝑢𝑟𝑠𝑒), 𝑠𝑡𝑢𝑑𝑖𝑒𝑠(𝑆𝑡𝑢𝑑𝑒𝑛𝑡, 𝐶𝑜𝑢𝑟𝑠𝑒), !.

𝐶𝑜𝑢𝑟𝑠𝑒 = 𝑒𝑛𝑔𝑙𝑖𝑠𝑕

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑎𝑙𝑖𝑐𝑒 ;

𝑓𝑎𝑙𝑠𝑒.

