
Meerut Institute of Engineering & Technology

N.H. 58, Delhi-Roorkee Highway, Baghpat Road Bypass Crossing,
Meerut-250005, UP(India)

Department of Computer Science & Engineering

B.Tech (Session 2018-19)

Even-Semester

COMPUTER NETWORK LAB

(RCS-651)

L T P
0 0 2

Department Of Computer Science & Engineering

Course Outcomes

Subject Name: Computer Networks Lab Subject code: RCS-651

The students are expected to be able to demonstrate the following knowledge, skills and attitudes

after completing this course:

1. To understand the basic concepts of network devices and connectivity.

2. To analyze network traffic using wireshark tool.

3. To design and configure a network using Cisco Packet Tracer.

4. To implement a client/server chatting program using socket programming

Table of Content

S.No Name of the practical

Page No.

1 OSI model simulation.

2 To study of Network CONNECTING DEVICES.

3 Verify the connectivity of your workstation to the internet.

4 Implementation of the IPCONFIG network command.

5 Program to count Even and Odd Parity.

6 Program for stuffing & De- stuffing of Bits.

7 Program to implement Cyclic Redundancy Check CRC.

8
Implementation of Distance Vector Routing to find suitable path for

transmission.

9 C code to implement RSA Algorithm (Encryption and Decryption).

10
Write a C program for IPV4, Implementation of decimal to binary,

Implementation of binary to decimal.

11 To implement network using Cisco packet tracer.

12 To Study packet’s information through Wireshark Simulator.

13 Program to implement Socket Programming.

http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.ccodechamp.com%2Fc-program-to-implement-cyclic-redundancy-check-crc%2F&ei=HoK_VMTnCYe4mwWfyoGgBQ&usg=AFQjCNEgyLupFM5QSyrmOUKKqS5Plr_svg&sig2=sZIf72PDqGZSfJ2TMWamKA

Program No. 1

Objective: OSI model simulation.

PROGRAM DEFINITION: This is an open system interconnection program that transmit

message from sender to receiver through server different layers.

PROGRAM DESCRIPTION:

The OSI Model deals with connecting open system. This model does not specify the exact

services and protocols to use in each layer. Therefore, the OSI Model is not a network

architecture. This model has seven layers. They are Physical layer, Data link layer,

Presentation layer, Network layer, Session layer, Transport layer and Application layer. At

sender side, each layer adds the header. The length of string i.e., number of bytes are not

restricted up to Session layer.

ALGORITHM:

1. Read the input string and address.

2. Add application header.

3. Print the string.

4. Add the presentation layer header.
5. Print the string.

6. Add the Session layer header.

7. Print the string.
8. Add the Transport layer header.

9. Print the string.
10. Add the Network layer header.

11. Print the string.
12. Add the Data link layer header.

13. Print the string

14. Add the physical layer header.

15. Print the string.

INPUT: Enter the string: hai

OUTPUT: TRANSMITTER:

APPLICATION LAYER: AH hai

PRESENTATION LAYER: PHAH hai

SESSION LAYER: SHPHAH hai

TRANSPORT LAYER: THSHPHAH hai

NETWORK LAYER: NHTHSHPHAH hai

DATALINK LAYER: DHNHTHSHPHAH hai

MESSAGE ENTERED INTO PHYSICAL LAYER AND TRANSMITTED.

Practical no. 2

Objective: To study of Network CONNECTING DEVICES.

Passive Hubs
 A passive hub is just a connector. It connects the wires coming from different
 branches. In a star-topology Ethernet LAN, a passive hub is just a point where the
 signals coming from different stations collide; the hub is the collision point. This
 type of a hub is part of the media; its location in the Internet model is below the
 physical layer.
Repeaters
 A repeater is a device that operates only in the physical layer. Signals that carry
 information within a network can travel a fixed distance before attenuation
 endangers the integrity of the data. A repeater receives a signal and, before it
 becomes too weak or corrupted, regenerates the original bit pattern. The repeater
 then sends the refreshed signal.

Figure : A repeater connecting two segments of a LAN

A repeater does not actually connect two LANs; it connects two segments of the same LAN.
The segments connected are still part of one single LAN. A repeater is not a device that can
connect two LANs of different protocols.

A repeater connects segments of a LAN.

A repeater forwards every frame; it has no filtering capability.
A repeater is a regenerator, not an amplifier.

Active Hubs
An active hub is actually a multipart repeater. It is normally used to create connections
between stations in a physical star topology. We have seen examples of hubs in some
Ethernet implementations (lOBase-T, for example). However, hubs can also be used to
create multiple levels of hierarchy, as shown in Figure. The hierarchical use of hubs
removes the length limitation of 10Base-T (100 m).

Bridges
A bridge operates in both the physical and the data link layer. As a physical layer device, it
regenerates the signal it receives. As a data link layer device, the bridge can check the
physical (MAC) addresses (source and destination) contained in the frame.

Transparent Bridges
A transparent bridge is a bridge in which the stations are completely unaware of the
bridge's existence. If a bridge is added or deleted from the system, reconfiguration of the
stations is unnecessary. According to the IEEE 802.1 d specification, a system equipped
with transparent bridges must meet three criteria:

I. Frames must be forwarded from one station to another.

2. The forwarding table is automatically made by learning frame movements in the
network.

3. Loops in the system must be prevented.

Two-Layer Switches
When we use the term switch, we must be careful because a switch can mean two different
things. We must clarify the term by adding the level at which the device operates. We can
have a two-layer switch or a three-layer switch. A three-layer switch is used at the
network layer; it is a kind of router. The two-layer switch performs at the physical and
data link layers.

A two-layer switch is a bridge, a bridge with many ports and a design that allows better
(faster) performance. A bridge with a few ports can connect a few LANs together. A bridge
with many ports may be able to allocate a unique port to each station, with each station on
its own independent entity. This means no competing traffic (no collision, as we saw in
Ethernet).
A two-layer switch, as a bridge does, makes a filtering decision based on the MAC address
of the frame it received. However, a two-layer switch can be more sophisticated. It can have
a buffer to hold the frames for processing. It can have a switching factor that forwards the
frames faster. Some new two-layer switches, called cut-through switches, have been
designed to forward the frame as soon as they check the MAC addresses in the header of
the frame.

Routers
A router is a three-layer device that routes packets based on their logical addresses (host-
to-host addressing). A router normally connects LANs and WANs in the Internet and has a
routing table that is used for making decisions about the route. The routing tables are
normally dynamic and are updated using routing protocols.

Three-Layer Switches
A three-layer switch is a router, but a faster and more sophisticated. The switching fabric in
a three-layer switch allows faster table lookup and forwarding. In this book, we use the
terms router and three-layer switch interchangeably.

Gateway
A gateway is normally a computer that operates in all five layers of the Internet or seven
layers of OSI model. A gateway takes an application message, reads it, and interprets it.
This means that it can be used as a connecting device between two internetworks that use
different models. For example, a network designed to use the OSI model can be connected
to another network using the Internet model. The gateway connecting the two systems can
take a frame as it arrives from the first system, move it up to the OSI application layer, and
remove the message.

Practical no. 3
Objective: Verify the connectivity of your workstation to the internet.

Experiment
1. Verify the connectivity of your workstation to the internet.
2. Open the Command Prompt of the operating system using either of the following
 methods:
 Click on Start > All Programs > Accessories > Command Prompt or

 Click on Start > Run, enter cmd (short for command) and click on ok.
 A Command Prompt screen should open.
3. Gather TCP/IP configuration information: Type ipconfig (short for IP configuration)
 and press Enter. The screen will show the IP address, subnet mask, and default
 gateway for your computer’s connection.
Notice the values in the Command Prompt. The IP address and the default gateway should
be in the same network or subnet, otherwise this host would not be able to communicate
outside the network. In Fig. 3, the subnet mask tells us that the first three octets of the IP
address and the default gateway must be the same in order to be in the same network.

Figure 3. The TCP/IP configuration information of a workstation

4. Check more detailed TCP/IP configuration information: Type ipconfig /all and

 press Enter. What are the DNS and DHCP server addresses? What are their

 functions? What is the MAC of the network interface card?

5. Ping the IP address of another computer. Note that for the ping and tracert

 commands to work the PC firewalls have to be disabled. Why do you think this is so?

 Ask the IP address of the workstation that is being used by another group of

 students. Then type ping, space, and the IP address that you received, then press

 Enter. Notice the outputs. Fig. 4 shows a successful result of a ping to a given IP

 address.

Figure 4. A successful result of a ping to a certain IP address

6. Ping the IP address of the gateway router from the details that have been observed

 in the output of step 4 above. If the ping is successful, it means that there is a

 physical connectivity to the router on the local network and probably the rest of the

 world.

7. Ping the Loopback IP address of your computer. Type the following command: ping

 127.0.0.1. The IP address 127.0.0.1 is reserved for loopback testing. If the ping is

 successful, then TCP/IP is properly installed and functioning on this computer.

8. You can also ping using names like websites. Ping the IP address of the cisco

 website. Type ping, space and www.cisco.com, then press Enter. Notice the

 outputs. A DNS server will resolve the name to an IP address and the ping will be

 successful only in the existence of the DNS server.

9. Ping www.ee.uct.ac.za and observe the results. Is there a difference in time between

 the results shown by pinging www.cisco.com and www.ee.uct.ac.za. If so why and if

 not why?

http://www.ee.uct.ac.za/

10. Trace the route to the Cisco website. Type tracert www.cisco.com and press enter.

 In a successful output, you will see listings of all routers the tracert requests had to

 pass through to get to the destination.

11. Trace the route to the website of the Department of Electrical Engineering. Type

 tracert www.ee.uct.ac.za and press enter. The output should take less time than

 that of step 9.

Figure 5. A traceroute output

Program No.4
Ojective: Implementation of the IPCONFIG network command
 Configure IP (internet protocol configuration)

Syntax:
IPCONFIG /all:

Display full configuration information.
IPCONFIG /release [adapter]:

Release the IP address for the specified adapter.
IPCONFIG /renew [adapter]:

Renew the IP address for the specified adapter.
IPCONFIG /flushdns:

Purge the DNS Resolver cache.
IPCONFIG /registerdns:

Refresh all DHCP leases and re-register DNS names.
IPCONFIG /displaydns:

Display the contents of the DNS Resolver Cache.
IPCONFIG /showclassid adapter:

Display all the DHCP class IDs allowed for adapter.
 IPCONFIG /setclassid adapter [classid]:
 Modify the dhcp class id.
If the Adapter name contains spaces, use quotes: "Adapter Name" wildcard characters *
and ? allowed, see the examples below The default is to display only the IP address, subnet
mask and default gateway for each adapter bound to TCP/IP.
For Release and Renew, if no adapter name is specified, then the IP address leases for all

For Setclassid, if no ClassId is specified, then the ClassId is removed.

Examples:

ipconfig ... Show information.

ipconfig /all ... Show detailed information

ipconfig /renew ... renew all adapters

ipconfig /renew EL* ... renew any connection that has its name starting with EL

ipconfig /release *Con* ... release all matching connections, e.g. "Local Area

Connection 1" or "Local Area Connection 2"

ipconfig /setclassid "Local Area Connection" TEST ... set the DHCP class ID for

the named adapter to = TEST

Program No. 5

Objective: Program to count Even and Odd Parity.

Parity: Parity of a number refers to whether it contains an odd or even number of 1-bits.
The number has “odd parity”, if it contains odd number of 1-bits and is “even parity” if it
contains even number of 1-bits.
Main idea of the below solution is – Loop while n is not 0 and in loop unset one of the set
bits and invert parity.

Algorithm: getParity(n)

1. Initialize parity = 0
2. Loop while n != 0
a. Invert parity
parity = !parity
b. Unset rightmost set bit
n = n & (n-1)
3. return parity

Example:
Initialize: n = 13 (1101) parity = 0

n = 13 & 12 = 12 (1100) parity = 1
n = 12 & 11 = 8 (1000) parity = 0
n = 8 & 7 = 0 (0000) parity = 1

Program No. 6

Objective: Program for stuffing & De- stuffing of Bits.

(1) Write a program to implement bit stuffing & De-stuffing.
(2) Write a program to implement character stuffing & De-stuffing.

(1) Write a program to implement bit stuffing & De-stuffing.

Resources: Turbo C, C++.
Bit Stuffing and Destuffing
 Include <iostream.h>,<conio.h>,<io.h> files both in transmitter & receiver programs.
 During the transmission, attach a flag pattern (01111110) at the start & end of data
 unit.
 If transmitter sees five consecutive one’s in data, it stuffs zero bit in data.
 At the receiving end, whenever in data it finds five consecutive one’s and the next bit
 are zero then the receiver will de stuff that zero bit. e.g. If the Pattern to be
 transmitted is 00011110111110000, then at the transmitter side will be
 000111101111100000 because as 5 consecutive 1’s are detected, one 0 should be
 stuffed and at the receiver side again as it will detect 0 after 5 consecutive 1’s , it will
 de-stuff it.

(2) Write a program to implement character stuffing & De-stuffing.

Resources: Turbo C, C++.
Character Stuffing and Destuffing
Include <iostream.h>,<conio.h>,<io.h> files both in transmitter & receiver programs.
This is type of Framing Method.
During the transmission attach a ASCII Code pattern DLE STX at the start & DLE ETX end

of data Unit.
If transmitter sees DLE stuff another DLE text in data.
At the receiving end, whenever the data it finds five consecutive DLE then receiver will
destuff One DLE.

Program No. 7

Objective: Program to implement Cyclic Redundancy Check CRC.

CRC or Cyclic Redundancy Check is a method of detecting accidental changes/errors in
communication channel.

CRC uses Generator Polynomial which is available on both sender and receiver side. An
example generator polynomial is of the form like x3 + x + 1. This generator polynomial
represents key 1011. Another example is x2 + 1 that represents key 101.
n : Number of bits in data to be sent

from sender side.

k : Number of bits in the key obtained

from generator polynomial.

Sender Side (Generation of Encoded Data from Data and Generator Polynomial (or
Key)):

1. The binary data is first augmented by adding k-1 zeros in the end of the data
2. Use modulo-2 binary division to divide binary data by the key and store remainder of

division.
3. Append the remainder at the end of the data to form the encoded data and send the

same
.

Receiver Side (Check if there are errors introduced in transmission)
Perform modulo-2 division again and if remainder is 0, then there are no errors.
In this article we will focus only on finding the remainder i.e. check word and the code
word.

Modulo 2 Division:
The process of modulo-2 binary division is the same as the familiar division process we use
for decimal numbers. Just that instead of subtraction, we use XOR here.
 In each step, a copy of the divisor (or data) is XORed with the k bits of the dividend (or

key).
 The result of the XOR operation (remainder) is (n-1) bits, which is used for the next

step after 1 extra bit is pulled down to make it n bits long.
 When there are no bits left to pull down, we have a result. The (n-1)-bit remainder

which is appended at the sender side.
Illustration:
Example 1 (No error in transmission):
Data word to be sent - 100100

Key - 1101 [Or generator polynomial x3 + x2 + 1]

Sender Side:

http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.ccodechamp.com%2Fc-program-to-implement-cyclic-redundancy-check-crc%2F&ei=HoK_VMTnCYe4mwWfyoGgBQ&usg=AFQjCNEgyLupFM5QSyrmOUKKqS5Plr_svg&sig2=sZIf72PDqGZSfJ2TMWamKA

Therefore, the remainder is 001 and hence the encoded
data sent is 100100001.

Receiver Side:
Code word received at the receiver side 100100001

Therefore, the remainder is all zeros. Hence, the
data received has no error.

Example 2: (Error in transmission)

Data word to be sent - 100100

Key - 1101

Sender Side:

Therefore, the remainder is 001 and hence the
code word sent is 100100001.

Receiver Side
Let there be error in transmission media
Code word received at the receiver side - 100000001

Since the remainder is not all zeroes, the error
is detected at the receiver side.

Program No. 8

Objective: Implementation of Distance Vector Routing to find suitable path for
 transmission.
A distance-vector routing (DVR) protocol requires that a router inform its neighbors of
topology changes periodically. Historically known as the old ARPANET routing algorithm
(or known as Bellman-Ford algorithm).
Bellman Ford Basics – Each router maintains a Distance Vector table containing the
distance between itself and ALL possible destination nodes. Distances,based on a chosen
metric, are computed using information from the neighbors’ distance vectors.
Information kept by DV router -

 Each router has an ID
 Associated with each link connected to a router,
 there is a link cost (static or dynamic).
 Intermediate hops

Distance Vector Table Initialization -
 Distance to itself = 0
 Distance to ALL other routers = infinity number.

Distance Vector Algorithm –

1. A router transmits its distance vector to each of its neighbors in a routing packet.
2. Each router receives and saves the most recently received distance vector from each

of its neighbors.
3. A router recalculates its distance vector when:

 It receives a distance vector from a neighbor containing different information
than before.

 It discovers that a link to a neighbor has gone down.
The DV calculation is based on minimizing the cost to each destination

Dx(y) = Estimate of least cost from x to y

C(x,v) = Node x knows cost to each neighbor v

Dx = [Dx(y): y ∈ N] = Node x maintains distance vector

Node x also maintains its neighbors' distance vectors

– For each neighbor v, x maintains Dv = [Dv(y): y ∈ N]

Note –
 From time-to-time, each node sends its own distance vector estimate to neighbors.
 When a node x receives new DV estimate from any neighbor v, it saves v’s distance

vector and it updates its own DV using B-F equation:
 Dx(y) = min { C(x,v) + Dv(y)} for each node y ∈ N

Example – Consider 3-routers X, Y and Z as shown in figure. Each router have their routing
table. Every routing table will contain distance to the destination nodes.

Consider router X , X will share it routing table to neighbors and neighbors will share it
routing table to it to X and distance from node X to destination will be calculated using
bellmen- ford equation.
Dx(y) = min { C(x,v) + Dv(y)} for each node y ∈ N

As we can see that distance will be less going from X to Z when Y is intermediate node(hop)
so it will be update in routing table X.

Similarly for Z also –

Finally the routing table for all –

Program No. 9

Objective: C code to implement RSA Algorithm(Encryption and Decryption)

RSA Algorithm in Cryptography

RSA algorithm is asymmetric cryptography algorithm. Asymmetric actually means that it
works on two different keys i.e. Public Key and Private Key. As the name describes that
the Public Key is given to everyone and Private key is kept private.
An example of asymmetric cryptography :

1. A client (for example browser) sends its public key to the server and requests for
some data.

2. The server encrypts the data using client’s public key and sends the encrypted data.
3. Client receives this data and decrypts it.

Since this is asymmetric, nobody else except browser can decrypt the data even if a third
party has public key of browser.

The idea! The idea of RSA is based on the fact that it is difficult to factorize a large integer.
The public key consists of two numbers where one number is multiplication of two large
prime numbers. And private key is also derived from the same two prime numbers. So if
somebody can factorize the large number, the private key is compromised. Therefore
encryption strength totally lies on the key size and if we double or triple the key size, the
strength of encryption increases exponentially. RSA keys can be typically 1024 or 2048 bits
long, but experts believe that 1024 bit keys could be broken in the near future. But till now
it seems to be an infeasible task.

Program No.10
Objective:
Write a C program for IPV4, Implementation of decimal to binary, Implementation of
binary to decimal.

Resources: Turbo C, C++.

IP Addressing | Introduction and Classful Addressing

IP address is an address having information about how to reach a specific host,
especially outside the LAN. An IP address is a 32 bit unique address having an address
space of 232.
Generally, there are two notations in which IP address is written, dotted decimal
notation and hexadecimal notation.
Dotted Decimal Notation

Hexadecimal Notation

Some points to be noted about dotted decimal notation :
1. The value of any segment (byte) is between 0 and 255 (both included).
2. There are no zeroes preceding the value in any segment (054 is wrong, 54 is
correct).

Classful Addressing
The 32 bit IP address is divided into five sub-classes. These are:

 Class A
 Class B

 Class C
 Class D
 Class E

Each of these classes has a valid range of IP addresses. Classes D and E are reserved
for multicast and experimental purposes respectively. The order of bits in the first octet
determine the classes of IP address.
IPv4 address is divided into two parts:

 Network ID
 Host ID

The class of IP address is used to determine the bits used for network ID and host ID
and the number of total networks and hosts possible in that particular class. Each ISP or
network administrator assigns IP address to each device that is connected to its
network.

Program No.11

OBJECTIVE: To implement a network using Cisco Packet Tracer.

THEORY: Packet Tracer is a protocol simulator developed by Dennis Frezzo and his team

at Cisco Systems. Packet Tracer (PT) is a powerful and dynamic tool that displays the

various protocols used in networking, in either Real Time or Simulation mode. This

includes layer 2 protocols such as Ethernet and PPP, layer 3 protocols such as IP, ICMP, and

ARP, and layer 4 protocols such as TCP and UDP. Routing protocols can also be traced.

Steps to simulate a network:

Step 1: Start Packet Tracer You will see the start screen as shown below.

Step 2: Choose “Hub” and then select “Generic”

Step 3: After selecting “Generic” click on the main area. You will see a Hub.

Step 4: Select “End Devices” and then click at “Generic” Choosing Devices and Connections

We will begin building our network topology by selecting devices and the media in which

to connect them. Several types of devices and network connections can be used.

Step 6: Select “Connections” from Power Cycle Devices and click on “Automatically choose

Connection Type”

Step 7: Draw connections from Hub to PCs

Step 8: Double click on a PC, a box will appear. Click on the “Desktop” tab.

Step 9: Then select “IP configuration”

Step 10: Write the IP address of your network and click at the Subnet mask filed. Subnet

Mask will appear automatically.

Step11: Repeat Step 10 to set the IPs for all the PCs.

Step 12: Select “Add simple message”

Step 13: Drag and Drop the message to the source device and then to the Destination device

In this case my source device is PC1 and destination device is PC4.

Step 14: Select the Simulation Mode at the bottom right corner.

Step15: Click at “Auto Capture / Play” Conclusion: Connection established successfully

between Source and Destination.

Step 16: Observe the path of the Message from source to Hub, then to all devices. And then

from Destination to Hub then back to the source.

Step 17: Finally observe the marks. If the source PC is marked correct it means you have

successfully established the connection.

Screenshots:

Fig1: Step 1

Fig2: Step 2

Fig3:Step3

Fig4:Step4

Fig5:Step5

Fig6:Step6

Fig7:step7

Fig8:Step8

Fig9:Step9

Fig10:Step10

Fig12:Step12

Fig14:Step14

Fig15:Step15

Fig16:Step16

Fig17:Step17

Program No.3

OBJECTIVE: To Study packet’s information through Wireshark Simulator.

THEORY
Wireshark is a tool that allows packet traces to be sniffed, captured and analysed. Before
Wireshark (or in general, any packet capture tool) is used, careful consideration should be
given to where in the network packets are to be captured. Refer to the capture setup pages
in the wireshark.org wiki for technical details on various deployment scenarios. If it is
unclear which deployment scenario should be used to capture traces for a particular
problem, consider opening a service request with Novell Technical Services for assistance.

Obtain appropriate Wireshark package
Obtain a Wireshark package or installer for the operating system running on the system
which is to be used for packet capture.

Wireshark is included in Novell's SUSE Linux products (for some products, under its old
name, Ethereal). For other platforms, download a binary or installer from
http://www.wireshark.org. With installers, ensure all product components are selected for
installation.

Start Wireshark

Start Wireshark. On a Linux or Unix environment, select the Wireshark or Ethereal entry in

the desktop environment's menu, or run "wireshark" (or "ethereal") from a root shell in a

terminal emulator. In a Microsoft Windows environment, launch wireshark.exe from

C:\Program Files\Wireshark.

Note that on Un*x systems, a non-GUI version of Wireshark called "tshark" (or "tethereal")

may be available as well, but its use is beyond the scope of this document.

Configure Wireshark

After starting Wireshark, do the following:

1. Select Capture | Interfaces

2. Select the interface on which packets need to be captured.

3. If capture options need to be configured, click the Options button for the chosen

interface. Note the following recommendations for traces that are to be analysed by

Novell Technical Services:

 Capture packet in promiscuous mode: This option allows the adapter to

capture all traffic not just traffic destined for this workstation. It should be

enabled.

 Limit each packet to: Leave this option unset. Novell Support will always

want to see full frames.

http://wiki.wireshark.org/CaptureSetup
http://www.wireshark.org/

 Filters: Generally, Novell Support prefers an unfiltered trace. For

documentation on filters, please refer to TID 10084702 - How to configure a

capture filter for Ethereal (formerly NOVL90720).

 Capture file(s): This allows a file to be specified to be used for the packet

capture. By default Wireshark will use temporary files and memory to

capture traffic. Specify a file for reliability.

 Use multiple files, Ring buffer with: These options should be used when

Wireshark needs to be left running capturing data data for a long period of

time. The number of files is configurable. When a file fills up, it it will wrap to

the next file. The file name should be specified if the ring buffer is to be used.

 Stop capture after xxx packet(s) captured: Novell Technical Support

would most likely never use this option. Leave disabled.

 Stop capture after xxx kilobyte(s) captured: Novell Technical Support

would most likely never use this option. Leave disabled.

 Stop capture after xxx second(s): Novell Technical Support would most

likely never use this option. Leave disabled.

 Update list of packets in real time: Disable this option if the problem that's

being investigated is occuring on the same workstation as where Wireshark

is running.

 Automatic scrolling in live capture: Wireshark will scroll the window so

that the most current packet is displayed.

 Hide capture info dialog: Disable this option so that you can view the count

of packets being captured for each protocol.

 Enable MAC name resolution: Wireshark contains a table to resolve MAC

addresses to vendors. Leave enabled.

 Enable network name resolution: Wireshark will issue DNS queries to

resolve IP host names. Also will attempt to resolve network network names

for other protocols. Leave disabled.

 Enable transport name resolution: Wireshark will attempt to resolve

transport names. Leave disabled.

4. Now click the Start button to start the capture.

5. Recreate the problem. The capture dialog should show the number of packets

increasing. If not, then stop the capture. Examine the interface list and pick the one

that is not associated with the WANIP. It will probably be a long alpha-numeric

string. If packets are still not being captured, try removing any filters that have been

defined.

6. Once the problem which is to be analyzed has been reproduced, click on Stop. It

might take a few seconds for Wireshark to display the packets captured.

If the destination address is always displayed as FFFFFFFF (IPX) or always ends in

https://support.microfocus.com/kb/doc.php?id=10084702
https://support.microfocus.com/kb/doc.php?id=10084702

.255 (IP) then all that has been captured is broadcast traffic. This is a useless trace.

This usually occurs when another machine is being traced (to start the trace while

the target machine is powered off, in order to capture the bootup process). The

capture setup needs to be reconsidered - port mirroring on the switch may need to

be set up, or a dumb hub may need to be used to make the traffic reach the sniffing

system. (Some devices advertised as "hubs" are in fact switches that may have the

intelligence to prevent the workstations from seeing each other's packets; with

these, getting a good trace may not be possible)

The Wireshark website has a good FAQ on this subject. Please refer to

http://www.wireshark.org/faq.html#q7.1

7. Save the packet trace in any supported format. Just click on the File menu option

and select Save As. By default Wireshark will save the packet trace in libpcap

format. This is a filename with a.pcap extension. Use this default for files sent to

Novell.

8. Create a trace_info.txt file with the IP and MAC address of the machines that are

being traced as well as any pertinent information, such as:

 What is the problem? (when did it start? steps to reproduce? any other

pertinent information)

 What steps were traced?

 Give names of the servers and files being accessed.

 If analysis of the trace has already been attempted, please provide Novell

Support with analysis notes.

For example: Packets 1-30 are boot. Packets 31-500 are login. Packets 501 to

1,000 is my application loading. Packet 1,001 to 1,500 is me saving my file.

The error occurred at approximately packet 1,480.

 Give the MAC addresses of hardware involved? (Workstation, servers,

printers ...)

 What is the workstation OS and configuration?

 What version of client software is running?

 If it works with one version of the client (or a particular server patch), then

get a trace of it working, and a trace of it not working.

 For Novell Client issues: Are there any client patches loaded?

 For Novell servers: What version of NetWare/OES (and other relevant

products i.e. ZEN or NDPS) are running on the server?

 What patches have been applied?

 What is the configuration of the network? Are there routers involved? If so,

what kind of routers?

http://www.wireshark.org/faq.html#q7.1

Assignment Questions:

Part 1
1. Is your browser running HTTP version 1.0 or 1.1? What version of HTTP is the server
running?
2. What languages (if any) does your browser indicate that it can accept to the server?
3. What is the IP address of your computer?
4. What is the status code returned from the server to your browser?
5. When was the HTML file that you are retrieving last modified at the server?
6. How many bytes of content are being returned to your browser?
7. By inspecting the raw data in the packet content window, do you see any headers within
the data that are not displayed in the packet-listing window? If so, name one.

Part 2
8. Inspect the contents of the first HTTP GET request from your browser to the server.
Do you see an “IF-MODIFIED-SINCE” line in the HTTP GET?
9. Inspect the contents of the server response. Did the server explicitly return the Contents
of the file? How can you tell?
10. Now inspect the contents of the second HTTP GET request from your browser to the
server. Do you see an “IF-MODIFIED-SINCE:” line in the HTTP GET? If so, what information
follows the “IF-MODIFIED-SINCE:” header?
11. What is the HTTP status code and phrase returned from the server in response to this
second HTTP GET? Did the server explicitly return the contents of the file? Explain.

Part 3
12. How many HTTP GET request messages did your browser send? Which packet number
in the trace contains the GET message for the Bill or Rights?
13. Which packet number in the trace contains the status code and phrase associated with
the response to the HTTP GET request?
14. What is the status code and Phrase in the response?
15. How many data-containing TCP segments were needed to carry the single HTTP
response and the text of the Bill of Rights?

Part 4
16. How many HTTP GET request messages did your browser send? To which
Internet addresses were these GET requests sent?
17. Can you tell whether your browser downloaded the two images serially, or whether
they were downloaded from the two web sites in parallel? Explain.

Part 5
Let’s try visiting a web site that is password-protected and examine the sequence of HTTP
message exchanged for such a site. The URL http://gaia.cs.umass.edu/wireshark-
labs/protected_pages/HTTP-wireshark-file5.html is password protected. The username is
“wireshark-students” (without the quotes), and the password is “network” (again, without
the quotes). So let’s access this “secure”
Password-protected site. Do the following:
•Make sure your browser’s cache is cleared, as discussed above, and close down

your browser. Then, start up your browser
•Start up the Wireshark packet sniffer
•Enter the following URL into your browser
http://gaia.cs.umass.edu/wireshark-labs/protected_pages/HTTP-wiresharkfile5.
Html Type the requested user name and password into the pop up box.
•Stop Wireshark packet capture, and enter “http” in the display-filter-specification
window, so that only captured HTTP messages will be displayed later in the
packet-listing window.
•(Note: If you are unable to run Wireshark on a live network connection, you can
use the http-ethereal-trace-5 packet trace to answer the questions below; see
footnote 2. This trace file was gathered while performing the steps above on one
of the author’s computers.)
Now let’s examine the Wireshark output. You might want to first read up on HTTP
authentication by reviewing the easy-to-read material on “HTTP Access Authentication
Framework” at http://frontier.userland.com/stories/storyReader$2159
18. What is the server’s response (status code and phrase) in response to the initial HTTP
GET message from your browser?
19. When your browser’s sends the HTTP GET message for the second time, what new field
is included in the HTTP GET message?

OUTPUT

Answers:

1. Version 1.1

2. Languages supported en-us and en

3. 192.168.1.102

4.200 Ok

5.73 bytes

6. Last-Modified: Tue, 23 Sep 2003 05:29:00 GMT

7.No

8. NO

9. Yes, because it return’s text/html on the webpage

10. yes, it tells the last modification date and time

11. Status code: 304 No it does not return any information explicitly as we cannot see any

line based text data or any other return type.

12. one, packet no. 8

13.Packet no: 14

14. status code : 200 phrase: OK

15. 4 TCP segments

16. 3 HTTP GET request

IP1: 128.119.245.12 IP2: 165.193.1.102 IP3: 134.241.6.82

17. The browser downloaded the images serially as the arrival times of both the images are

different and they are in separate tcp packet.

18. STATUS CODE: 401 PHRASES: Authorization Required

19. Authorization field

Figure1: Snapshot of question 1,2

Figure2: Snapshot of question 3,4,16

Figure3: Snapshot of question 5,6,7,8,12,13,14.

Figure4: Snapshot of question 9,10,11.

Figure 5: Snapshot of question 15.

Figure6: Snapshot of question 17.

Figure7: Snapshot of question 18.

Figure7: Snapshot of question 19.

Program No. 7

OBJECTIVE: To implement socket programming using TCP.

THEORY:

Socket programming is a way of connecting two nodes on a network to communicate with
each other. One socket (node) listens on a particular port at an IP, while other socket
reaches out to the other to form a connection. Server forms the listener socket while client
reaches out to the server.

Figure 1: State diagram for server and client model

Stages for server

Socket creation:

int sockfd = socket(domain, type, protocol)

sockfd: socket descriptor, an integer (like a file-handle)

domain: integer, communication domain e.g., AF_INET (IPv4 protocol) , AF_INET6
(IPv6 protocol)

type: communication type

SOCK_STREAM: TCP(reliable, connection oriented)

SOCK_DGRAM: UDP(unreliable, connectionless)

protocol: Protocol value for Internet Protocol(IP), which is 0. This is the same
number which appears on protocol field in the IP header of a packet.(man protocols
for more details)

Setsockopt:

int setsockopt(int sockfd, int level, int optname,

const void *optval, socklen_t optlen);

This helps in manipulating options for the socket referred by the file descriptor
sockfd. This is completely optional, but it helps in reuse of address and port. Prevents
error such as: “address already in use”.

Bind:

int bind(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

After creation of the socket, bind function binds the socket to the address and port
number specified in addr(custom data structure). In the example code, we bind the
server to the localhost, hence we use INADDR_ANY to specify the IP address.

Listen:

int listen(int sockfd, int backlog);

It puts the server socket in a passive mode, where it waits for the client to approach
the server to make a connection. The backlog, defines the maximum length to which
the queue of pending connections for sockfd may grow. If a connection request
arrives when the queue is full, the client may receive an error with an indication of
ECONNREFUSED.

Accept:

int new_socket= accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

It extracts the first connection request on the queue of pending connections for the
listening socket, sockfd, creates a new connected socket, and returns a new file
descriptor referring to that socket. At this point, connection is established between
client and server, and they are ready to transfer data.

Stages for Client

Socket connection: Exactly same as that of server’s socket creation

Connect:

int connect(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

 The connect () system call connects the socket referred to by the file descriptor
sockfd to the address specified by addr. Server’s address and port is specified in addr.

The steps involved in establishing a socket on the client side are as follows:

1.Create a socket with the socket() system call.

2.Connect the socket to the address of the server using the connect() system call

3.Send and receive data. There are a number of ways to do this, but the simplest is to use the

read() and write() system calls.

The steps involved in establishing a socket on the server side are as follows:

1.Create a socket with the socket() system call

2.Bind the socket to an address using the bind() system call. For a server socket on the Internet,

an address consists of a port number on the host machine.

3.Listen for connections with the listen() system call

4.Accept a connection with the accept() system call. This call typically blocks until a client

connects with the server.

5.Send and receive data

